Zuber Farms ADG Site - Data Integrator Notes

Zuber Farm's cogeneration plant serves the electrical needs for the farm located in Byron, NY. The new engine generator will receive both production and capacity payments.

The new 380 kW Guascor engine generator is located in the barn, adjacent to the digester building. All recovered heat is captured in the form of hot water and is used for digester heating, but a second loop is also installed to provide heat to the house, workshops, and milk house in the future.

Data Point Details

Data is logged at *15-minute* intervals by an Obvius AcquiLite data-logger. The data is aggregated into hourly data and uploaded to the web site.

The timestamp in the raw data files is in Eastern Standard Time. All data on the website is presented in Eastern Standard Time.

DG/CHP Generator Output (total kWh)

The Generator Output is calculated from the data point WG. The difference between consecutive records is calculated for the energy use during the interval. This energy data is then summed into hourly data.

DG/CHP Generator Output Demand (peak kW)

The Generator Output Demand is calculated from the same data point as above, WG. Instead of accumulating the kWh data, the highest kWh / interval value is multiplied by the number of intervals per hour in order to calculate the peak hourly demand.

DG/CHP Generator Gas Input (cubic feet)

The Generator Gas Input is calculated from the data point FGE. The difference between consecutive records is calculated to determine the gas flow per interval. This gas flow data is then summed into hourly data.

Total Facility Purchased Energy (total kWh) No data

Total Facility Purchased Demand (peak kW) No data

Other Facility Gas Use (cubic feet)

The Other Facility Gas Use is calculated from the data point FGF. The difference between consecutive records is calculated to determine the gas flow per interval. This gas flow data is then summed into hourly data. This data point represents flared biogas.

Total Facility Energy (total kWh) and Total Facility Demand (peak kW) No data <u>Unused Heat Recovery (total MBtu/h)</u> No data

<u>Useful Heat Recovery (total MBtu/h)</u> No data

Status/Runtime of DG/CHP Generator (hrs)

A micro turbine is considered to be fully on over an interval if the generator output is greater than 10 kWh./ interval (fully loaded capacity is 75 kW / interval). The status is given a value of 0.25 if the generator output is above 10 kW. The interval data is then summed into hourly data for the online database.

Ambient Temperature (avg °F) No data

<u>Electrical Efficiency (%)</u> Calculated by dividing the Generator Output in BTU's by the Generator Gas Input in BTU's (biogas energy density of 600 btu/cf used).

Total CHP Efficiency (%) Same as electrical efficiency

Data Quality Checks

The Data Quality Checks consist of three levels of verification:

- the data exist (flag=1),
- the data pass range checks (flag=2)
- the data pass relational checks (flag=3).

The methodology for applying the data quality begins by creating a contiguous database. We initially assume all data are good (flag=3) and then work backwards to identify data that does not meet Relational and/or Range Checking.

The next step is to apply the relational checks. Relational checks attempt to identify data values which conflict with other data in the data set. For instance, data received indicating a DG/CHP Generator output when the gas use is zero is suspect. For data failing a relational check, the data quality level is set to 2 for "Data Passes Range Checks".

The last step is evaluating the range checks. The range checks consist of reasonable high and low values based on facility and DG/CHP Generator information. Data that falls outside the defined range for the database value has its data quality level set to 1 for "Data Exists."

It is necessary to work backwards when applying data quality checks to insure that data gets set to the lowest applicable data quality level. It is possible for data to pass the relational check and fail the range check and such data will be set to a data quality level of 1 for "Data Exists."

Data	Description	Definition
Quality		
Levels		
3	Passes Relational	This data passes Range Checks and Relational Checks.
	Checking	This is the highest quality data in the data set.
2	Passes Range	This data passes the Range Checks but is uncorroborated
	Checks	by Relational Checks with other values.
1	Data Exists	This data does not pass Range Checks. This data is found
		to be suspect based on the facility and/or CHP equipment
		sizing.
0	Data Does Not	This data is a placeholder for maintaining a contiguous
	Exist	database only.

 Table 1. Data Quality Definitions

Relational Checks

These checks are applied to the interval data before it is converted to hourly data. If any of the data points fails the relational check, the data for the entire hour is marked as failed.

Table 2.	Relational	Checks
----------	------------	--------

Evaluated Point		Criteria	Result
FG		WG > 3 and FG <100	DQ Level for FG set to 2
Notes:	-	G/CHP Generator Gas Use	

WG – DG/CHP Generator Output

Range Checks

These checks are applied to the interval data before it is converted to hourly data. If any of the data points fails the range check, the data for the entire hour is marked as failed.

Table 4. Range Checks

Data Point	Hourly Data	Upper Range	Lower Range
	Method	Check	Check
DG/CHP Generator Output	Sum	390 kWh/hr	-5 kWh/hr
DG/CHP Generator Output Demand	Maximum	390 kW	-5 kW
DG/CHP Generator Gas Use	Sum	8,500 scf/hr	0 scf/hr
Total Facility Purchased Energy	Sum	-	-
Total Facility Purchased Demand	Maximum	-	-
Other Facility Gas Use	Sum	8,000 scf/hr	0 scf/hr
Unused Heat Recovery	Sum	-	-
Useful Heat Recovery	Sum	-	-
Status/Runtime of DG/CHP Generator	Sum	1 hr	0 hr
Ambient Temperature	Average	130°F	-30°F

Notes:

- 1. Data failing the Range Check has the data quality level set to 1 for "Data Exists"
- 2. Range checks are applied to interval data
- 3. This table contains the values from *range_checks.pro*

Monitoring Notes:

March 14, 2011

Modified the range for Generator gas use on Nov 11th, 2010.