Measurement and Verification Plan

DG/CHP System at Union College

807 Union Street Schenectady, NY 12308

1/16/17

CDH Energy Corporation 2695 Bingley Road Cazenovia, NY 13035-0641 315-655-1063

Project Team:

NYSERDA Project Manager:

James Hastings Energy Efficiency Services NYSERDA Phone: 1-866-NYSERDA x. 3492

Jim.Hastings@nyserda.ny.gov

NYSERDA Technical Consultant:

Dennis Landsberg L&S Energy Services 58 Clifton Country Rd. #203 Clifton Park, NY 12065 Phone: 518-383-9405

DLandsberg@ls-energy.com

Developer/Applicant:

John Daley COGEN Power Technologies 22 Century Hill Drive, Suite 201 Latham, New York 12110 Phone: 518-213-1010 jdaley@powerbycogen.com

www.cogenpowertechnologies.com

System Integrator:

Robert Haver The RoviSys Company 1455 Danner Drive, Aurora OH 44202 Phone: (216) 406-8594

robert.haver@rovisys.com

Site:

Union College 807 Union St. Schenectady, NY 12308

https://www.union.edu/

NYSERDA QC Contractor:

CDH Energy PO Box 641 2695 Bingley Rd Cazenovia, NY 13035

Phone: 315-655-1063

NYSERDA M&V Contractor:

CDH Energy PO Box 641 2695 Bingley Rd Cazenovia, NY 13035

Phone: 315-655-1063

Table of Contents

Project Team:	i
Introduction	1
Instrumentation	2
Data Analysis	5
Appendix A - System Schematics Cut Sheets for Key Sensors and Instruments	7
Appendix B - Cut Sheets for Key Sensors and Instruments	1
Appendix C - Site Photos	2

Introduction

A 1.8 MW CHP system consisting of a Kawasaki GPB 17D natural gas fired combustion turbine and a Rentech heat recovery steam generator (HRSG) capable of producing up to 45,000 lb/h of 130-psig steam are being installed at Union College in Schenectady, NY. Clough Harbor and Associates and Cogen Power Technologies (CHA/CPT) are providing a design-built installation of the system.

Union College is installing a Kawasaki GPB 17D natural gas fired turbine CHP system that will produce 1.65 MW net of electrical power. The turbine is outfitted with a HRSG that can produce 11,000 lb/h of steam at 130-psig using only the turbine exhaust, or up to 45,000 lb/h of 130-psig steam when the HRSG duct burner is firing. The turbine and HRSG duct burner are fueled by natural gas at a rate of 21.4 MMBtu/h LHV (23,000 CFH) for the turbine alone, and 52.9 MMBtu/h LHV (56,485 CFH) with the turbine and duct burner operating. Based on the manufacturers ratings, the system has a rated CHP efficiency of 74.2% LHV without the duct burner firing, and 83.6% LHV with the duct burner firing.

Based on the DEA submittal, the system is anticipated to displace 1,156 kW of peak demand, and provide 13,064,970 kWh/year of electricity. This performance equals 7,258 EFLH of turbine operation. The total contracted base incentive for the project reaches the program cap of \$2,000,000, with \$1,306,497 tied to annual performance as determined by monitoring and verification (M&V). The facility is also eligible for \$400,000 in bonus incentives; \$200,000 for both the critical facility and superior performance bonus. The project has a 1,156 kW contract demand reduction (kWspc).

Instrumentation

To quantify the performance of the proposed CHP system, the CHP system fuel input, net electrical output, and useful thermal output must be measured. To capture these energy flows, an instrumentation plan was developed by CDH Energy and reviewed with the developer Cogen Power and system integrator Rovisys. The instrumentation plan covers the location and type of sensors necessary to provide the appropriate measurements of the energy flows of the system.

Data Logger

No dedicated data logger is used for the Union College CHP system. The Rovisys data integration platform will collect information from the remote PLCs located at each major component, assemble the data into a report conforming with the NYSERDA requirements, and deliver the report daily to the CDH Energy servers. The Rovisys system interfaces with PLCS at the turbine skid, HRSG, dearator / feedwater system, balance of plant (BOP) PLCs including electrical switchgear monitoring, and gas compressor skid, using the appropriate protocol for each PLC (ex: Modbus, BACnet, HART, etc).

In accordance to the instrumentation plan, Cogen Power will supply the instrumentation listed below for use in meeting the NYSERDA CHP program monitoring requirements. The table below provides a description of the monitored data points and sensors.

Table 1. Instrumentation Supplied By Cogen Power

Dwg. Label	CDH Point	Description	Units	Instrument / Transducer
	WT	Cross Consister Output	kWh	
	WT KW	Gross Generator Output	kW	Schweitzer SEL 734
DMMF-2	WP1		kWh	
DMMF-2	WP KW1	-	kW	Schweitzer SEL 734
DMMF-3	WP2	Parasitic Loads - MCC3 - Gas Compressor	kWh	
DMMF-3	WP KW2	Parasilic Loads - MCC3 - Gas Compressor	kW	Schweitzer SEL 734
DMMF-4	WP3	Parasitic Loads - MCC4 - Chiller / Cooling	kWh	
DMMF-4	WP KW3	Tower	kW	Schweitzer SEL 734
	WB	Total Facility Load	kWh	
	WB KW		kW	Schweitzer SEL 735
-	WG	Not Concreter Output	kWh	Calculated
-	WG KW	Net Generator Output	kW	
FT-3023	FGT	Gas to Turbine - Temp & Pressure	cf	Foxboro IMV30-T22BE01F
FIT-522	FGDB	Gas to Duct Burner - Temp & Pressure	cf	Rosemount 3051SFC
-	FG	Total Gas Input (Turbine + Duct Burner)		Calculated
DP-100	SV	Exhaust Bypas Conrol Valve Status	%	-
TE-140	TCR	Condensate Return Temperature	٥F	ABB 266HSH
FIT-2	FFW	HRSG Feedwater Flow	lb/hr	Rosemount 3051CD2A
PIT-114	PFW	HRSG Feedwater Pressure	psiq	ABB 266HSH
FIT-1	FS	Steam Flow - From HRSG	lb/hr	Rosemount 3051SMV
PI-1	PS	Steam Pressure	psig	Rosemount 3051SMV
TI-1	TS	Steam Temperature	٥F	Rosemount 3051SMV
FE-101	FSDAHP	Steam Flow (90 psig) - To Deaerator	lb/hr	ABB SwirlMaster FSS450
FE-102	FSDALP	Steam Flow (35 psig) - To Deaerator		ABB SwirlMaster FSS450
FE-145	FSCH	Steam Flow - To Chiller	lb/hr	Niagara Meter XIHX
FE-149	FCHW	Chilled Water Loop Flow	gpm	Onicon F1210
TE-150	TCHWS	Chilled Water Loop - Supply Temp	٥F	-
TE-148	TCHWR	Chilled Water Loop - Return Temp	٥F	-
-	QU	Useful Heat Recovery	MBtu/h	Calculated
-	QCH	Chilled Water Output	Tons	Calculated

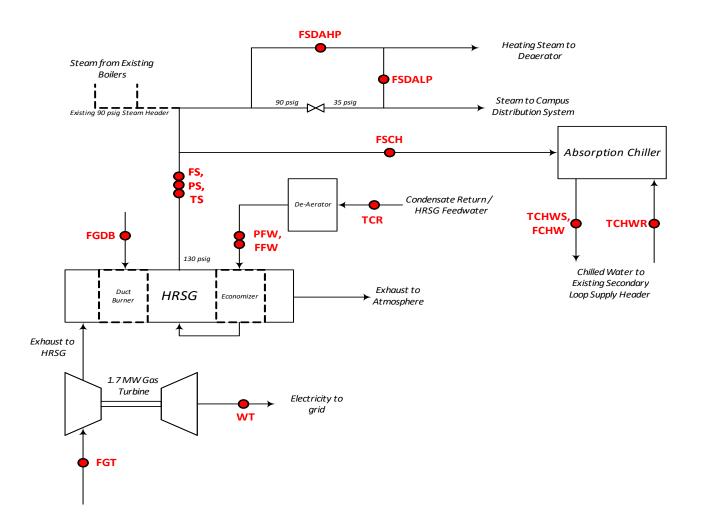


Figure 1. Union College CHP System Schematic

Onsite Installation

No onsite installation work is performed by CDH Energy.

Communications

All communications from the Rovisys system to the internet are supplied via Union College's internal network. The Rovisys system will upload the data report once per day to the CDH Energy server via sFTP using the following credentials:

- Protocol: sFTP (port 22)
- Server: data.cdhenergy.com
- Username: union_college
- Password: union_college_nyserda

On Site Support

The site will be responsible for providing access to all areas necessary for verification of sensors.

Data Analysis

The collected data will be used to determine the net power output of the system as well as the fuel conversion efficiency (FCE).

Peak Demand or Peak kW

The peak electric output or demand for each power reading will be taken as the average kW in a fixed 15-minute interval (0:00, 0:15, 0:30, etc), or

$$kW = \sum\nolimits_{15min} \frac{kWh}{\Delta t} = \sum\nolimits_{15min} \frac{kWh \ per \ interval}{0.25h}$$

and the net power output from the CHP system is defined as:

WG = WT - (WP1 + WP2)

Where:	WT	-	Gross gas turbine output (kWh or kW)
	WG	-	Net gas turbine output (kWh or kW)
	WP1	-	Parasitic load MCC-1 GTG Skid (kWh or kW)
	WP2	-	Parasitic load MCC-3 Gas Compressor (kWh or kW)

Heat Recovery Rates

Heat recovery from the CHP system is achieved in the form of steam production from the HRSG. Steam conditions (temperature and pressure) are monitored leaving the HRSG to set the enthalpy of steam delivered, and determine the amount of superheat delivered. Useful heat recovery in the form of 90-PSIG steam is calculated by:

 $QU = [(h_g(TS) - h_f(TCR)) \times FS / 1000]$

Where:	QU	-	Useful heat recovery (MBtu or MBtu/h)
	h _g (TS)	-	Enthalpy of HRSG steam at 90-psig (stipulated) and steam temperature TS (Btu/Ib)
	TS	-	HRSG steam temperature (°F)
	h _f (TCR)	-	Enthalpy of HRSG condensate (before deaerator) at 90 psig and average temperature TCR (Btu/Ib)
	TCR	-	Condensate return temperature (°F)
	FS	-	Net Steam Flow (Ib/h) (FS - FSDALP - FSDAHP)

Fuel Input

Fuel input to the CHP system is measured by two gas meters. The first meter is an orifice plate / differential pressure meter that measures the high-pressure gas leaving the gas compressor and entering the turbine. The second meter is another orifice plate / differential pressure meter that measures the low-pressure gas to the HRSG duct burner. Both meters are temperature compensated.

Total gas input to the CHP system is: FG = FGT + FGDB

Where:FG-Total natural gas input (CF or CF/h)FGT-Gas turbine natural gas input (CF or CF/h)

FGDB - Duct burner natural gas input (CF or CF/h)

Calculated Quantities

The fuel conversion efficiency of the CHP system, based on the higher heating value of the fuel, will be defined consistent with the NYSERDA CHP Systems Manual 2013 as:

$$FCE = \frac{\frac{QU}{0.8} + 3,412 \cdot WG}{HHV_{gas} \cdot FG}$$

Where:

QU	-	Useful heat recovery (Btu)
0.8	-	Nominal boiler efficiency displaced by useful heat
WG	-	Net generator output (kWh)
FG	-	Generator gas consumption (Std CF)
HHV gas	-	Higher heating value for natural gas (~1,030 Btu/CF).

The FCE can be calculated for any time interval. When converting to daily, monthly, or annual values, each value is summed and then the formula below is applied:

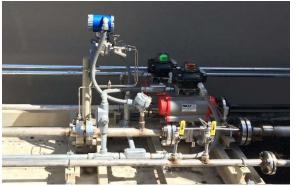
$$FCE = \frac{\frac{\sum^{N} QU}{0.8} + 3,412 \cdot \sum^{N} WG}{HHV_{gas} \cdot \sum^{N} FG}$$

Where N is equal to the number of intervals in the period of interest.

Appendix A - System Schematics

Appendix B - Cut Sheets for Key Sensors and Instruments

Appendix C - Site Photos


Gas turbine

Heat Recovery Steam Generator (HRSG)

Gas Compressor Enclosure (next to gas turbine skid)

Turbine Gas Meter (FGT)

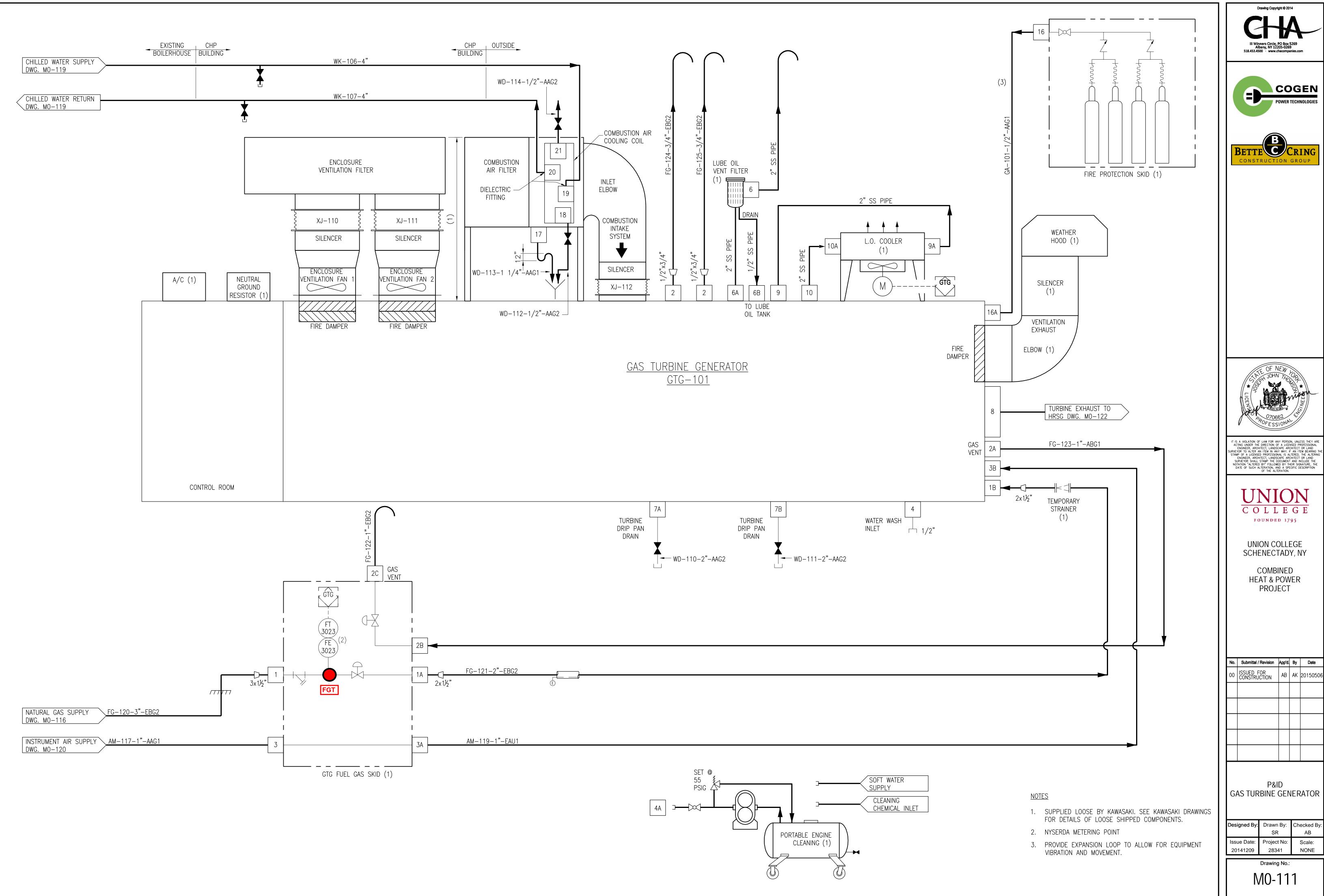
Duct Burner Gas Meter (FGDB)

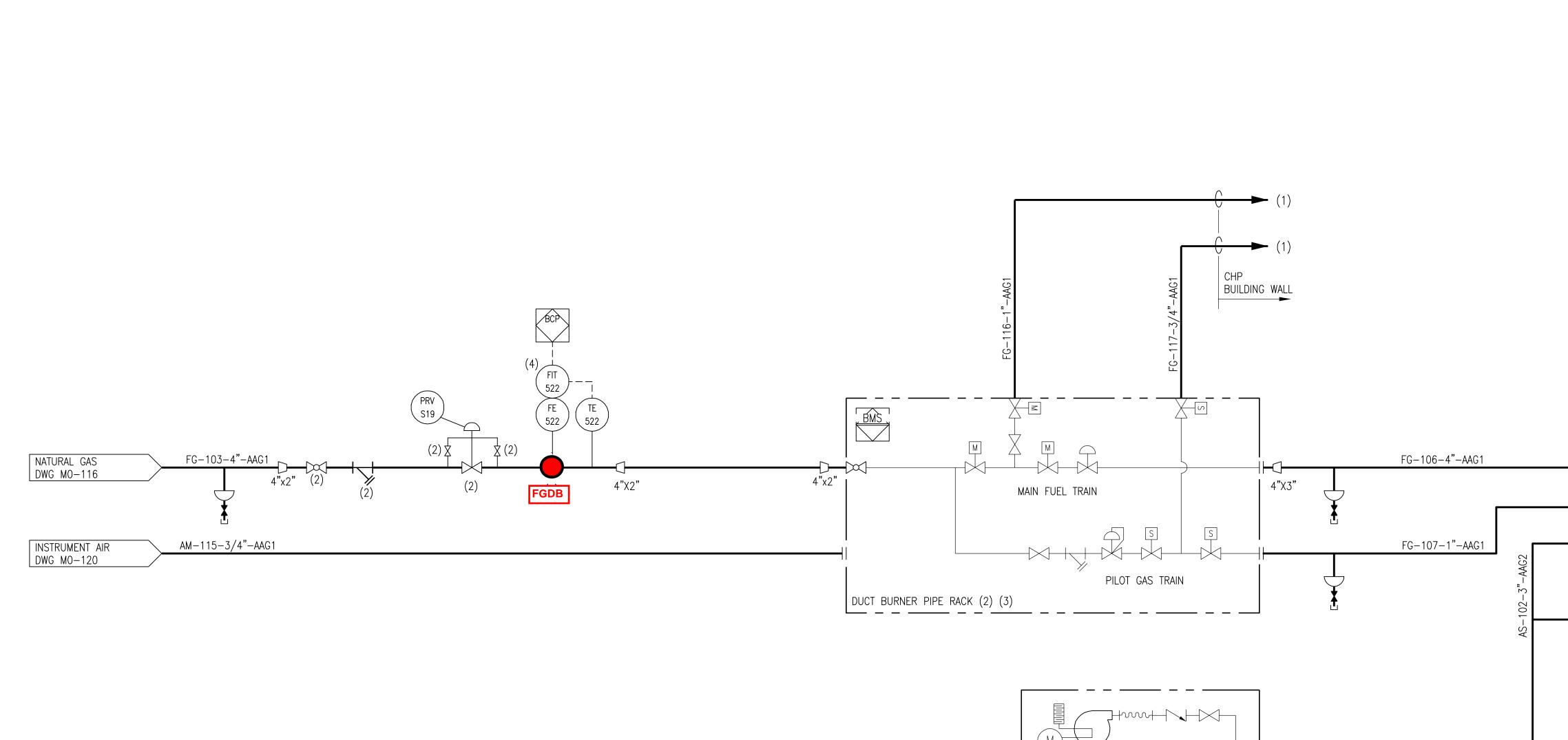
Steam Flow Meter (FS)

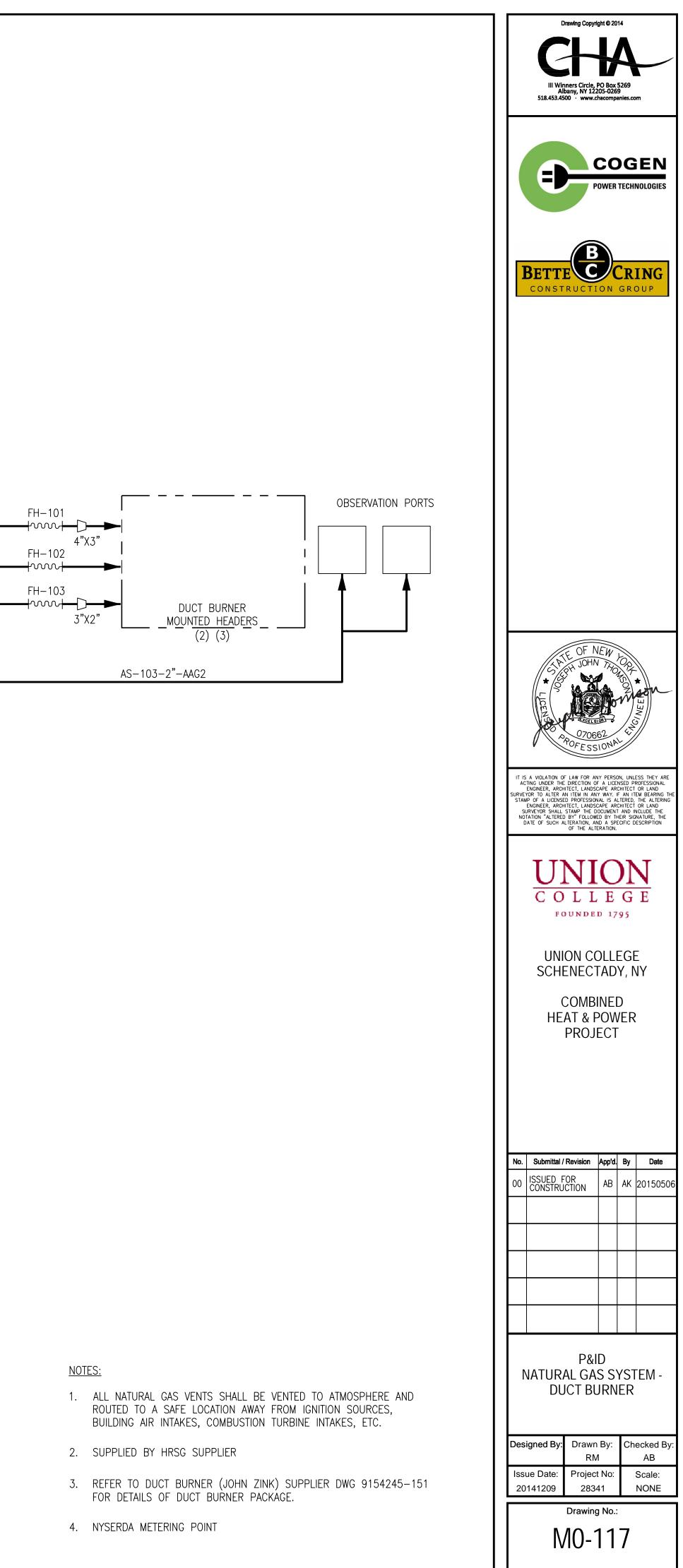
Steam Flowmeter Display (FS)

HRSG Feedwater Flow Meter (FFW)

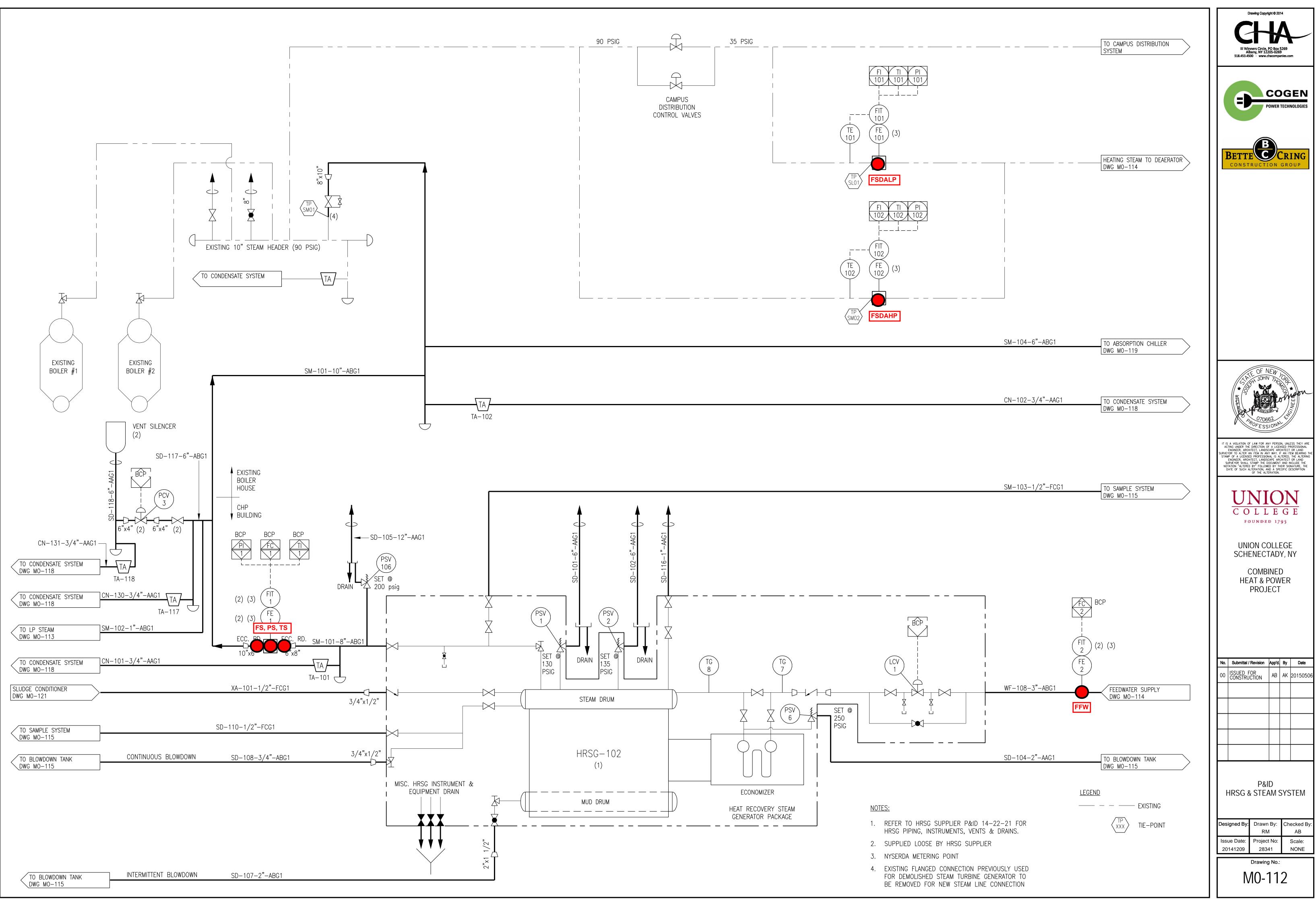
Steam to Chiller Flange (meter not yet installed) (FSCH)

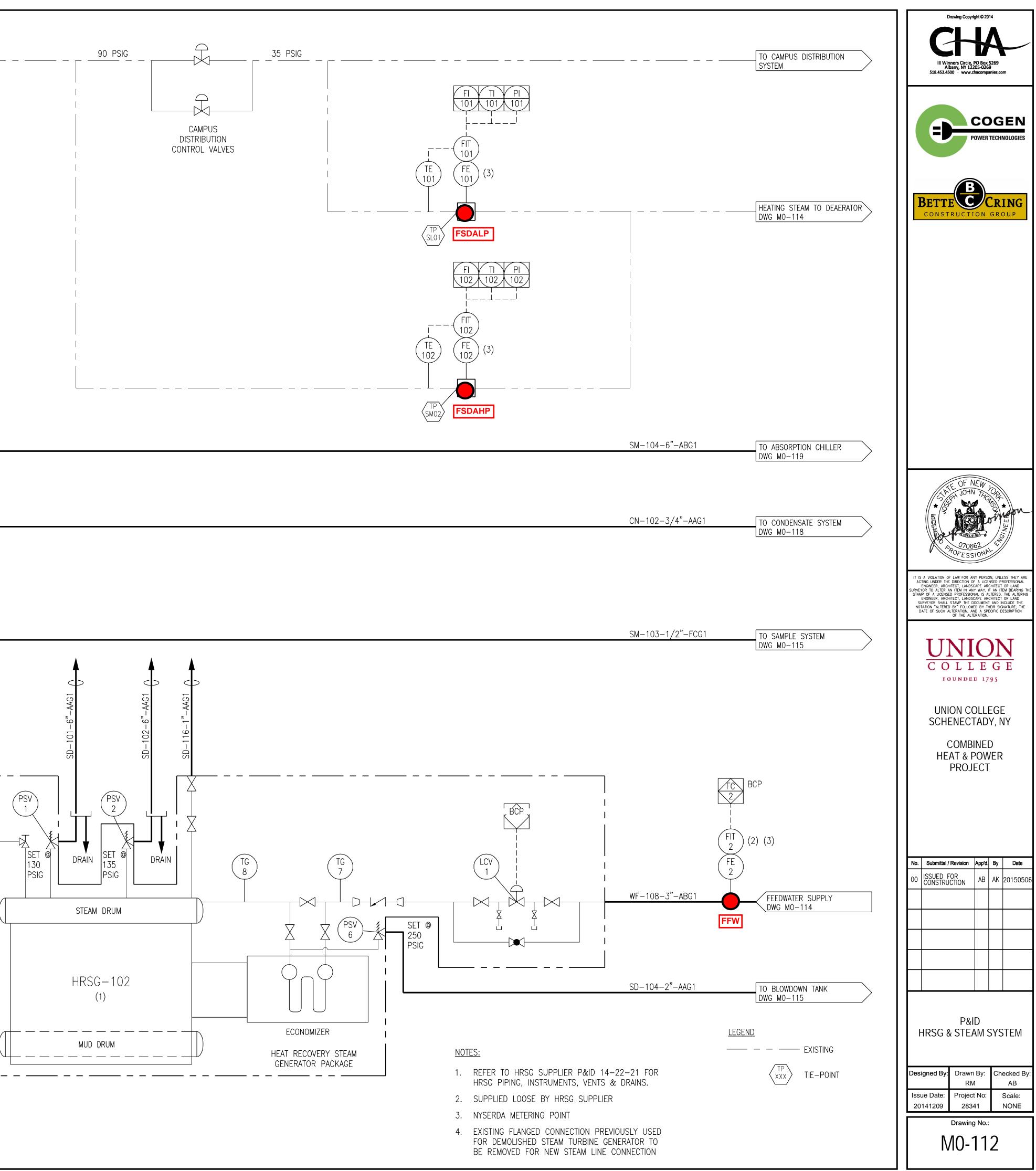

High Pressure Deaerator Steam Flow Meter (FSDAHP)




Chilled Water Flow Meter

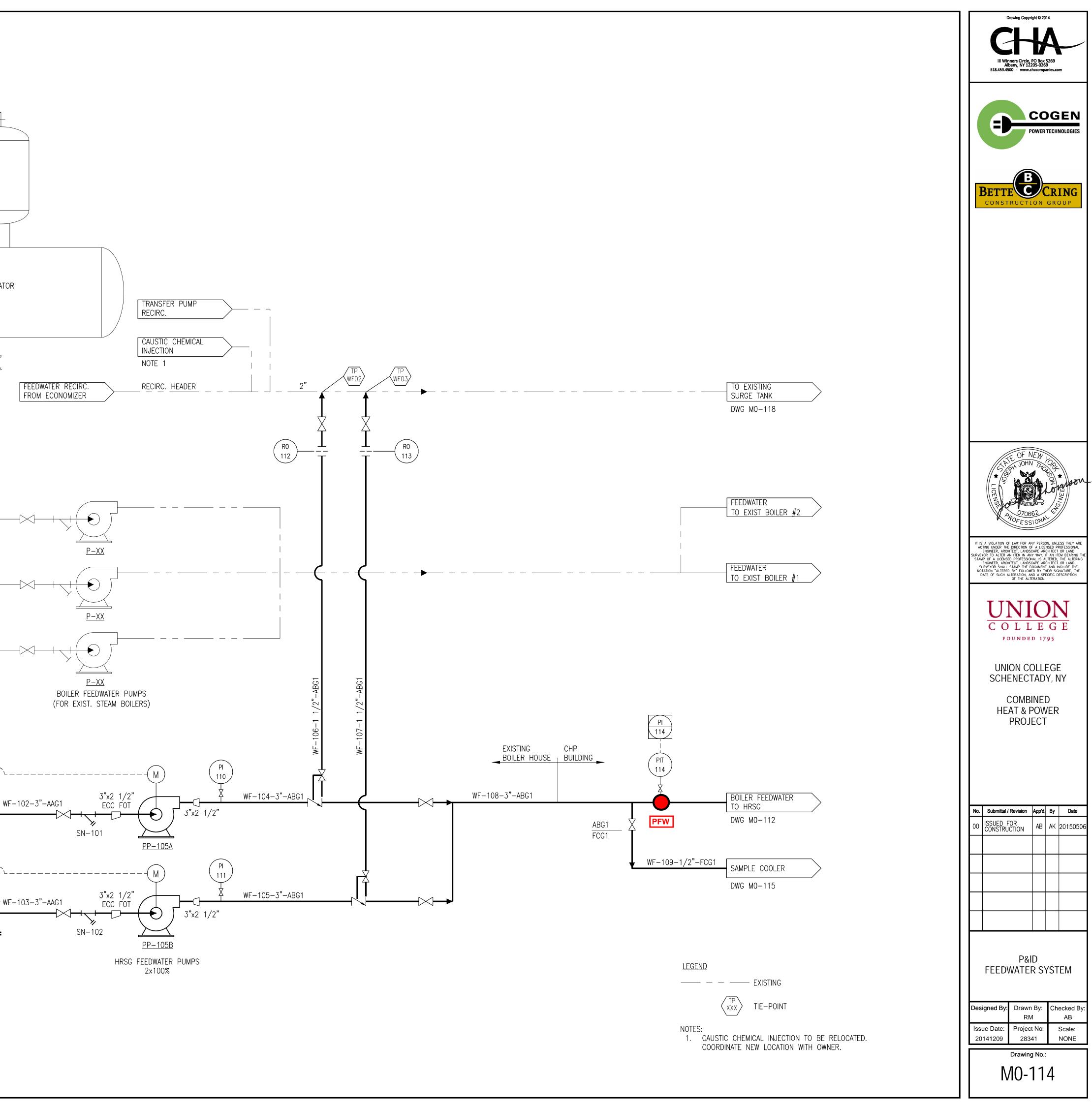
MCC4 Parasitic Load Meter - Typ. (WP3)




AS-101-3"-AAG2

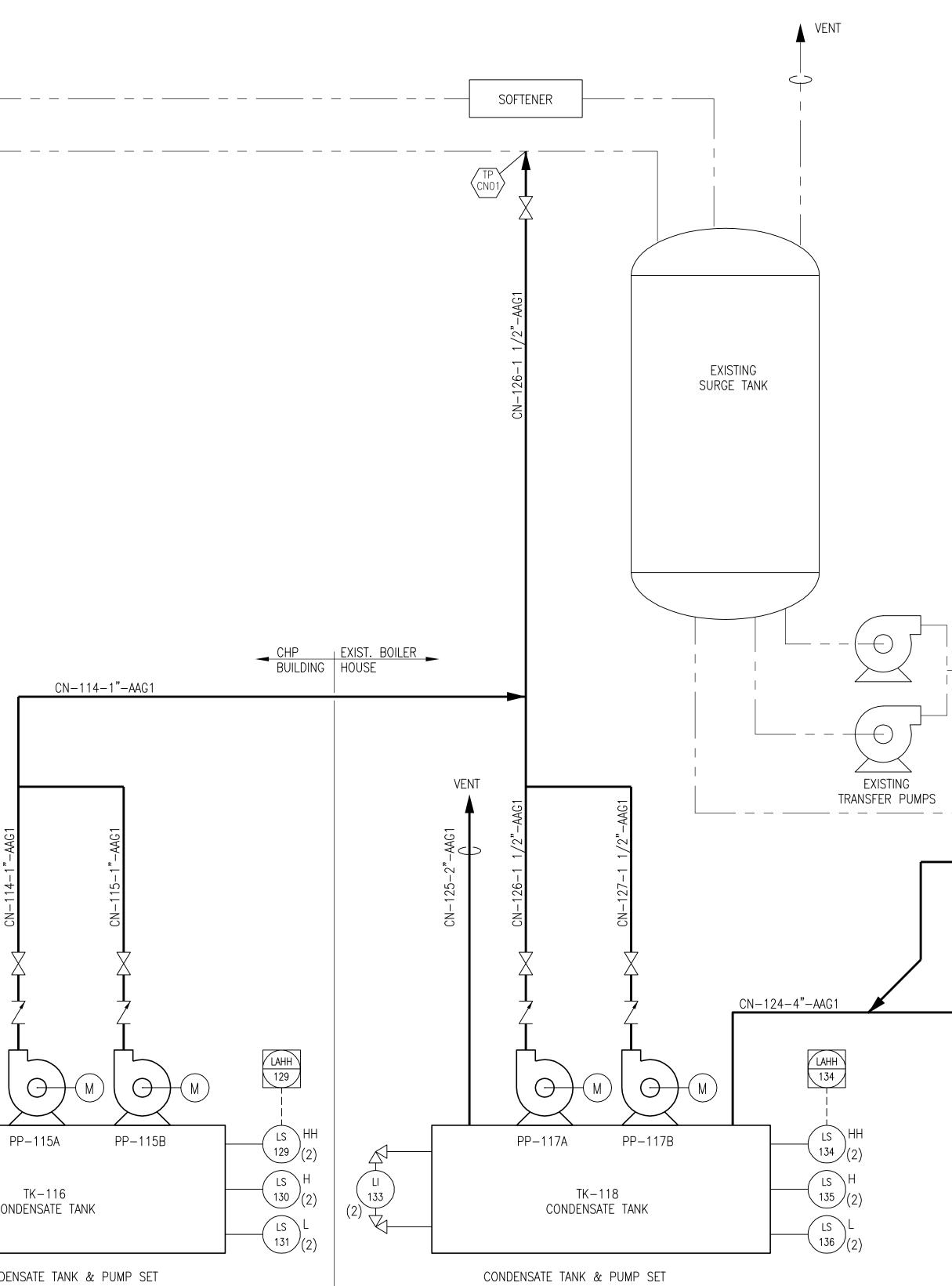
COOLING AIR BLOWER SKID (2) (3)

 (\neg)

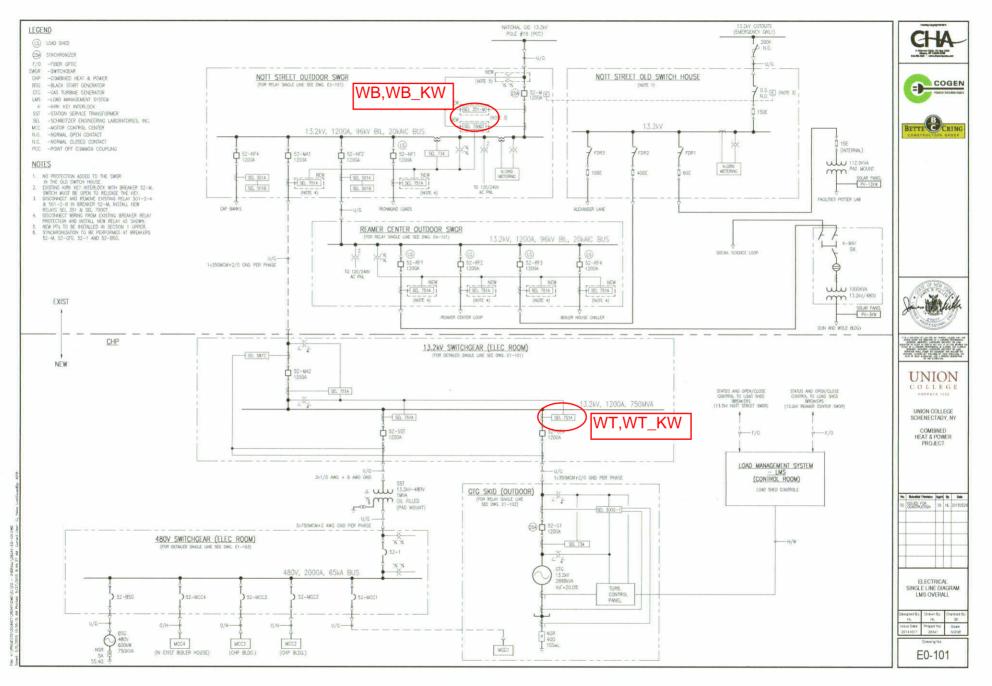

3"X2"

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ HEATING STEAM DWG M0-112 PSV SET AT) 50 psig DEAERATOR ___+ CONDENSATE/MAKE-UP WATER DWG M0-118 (TP WF01) _____ WF-102-3"-AAG1 WF-103-3"-AAG1

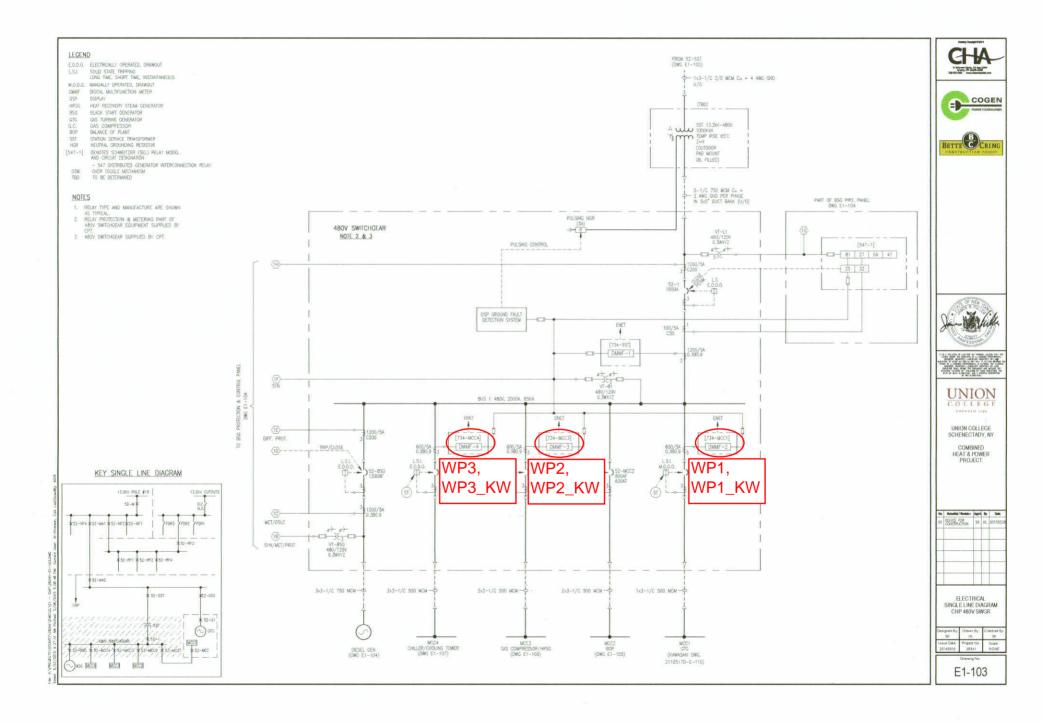
: V:\PROJECTS\SCON57\28341\DWG\PID\28341—M0—114.DWG ∍d: 5/5/2015 9:25:56 AM Plotted: 5/5/2015 9:26:03 AM Current User: Kadivari, Amir LastSavedBy: 5370

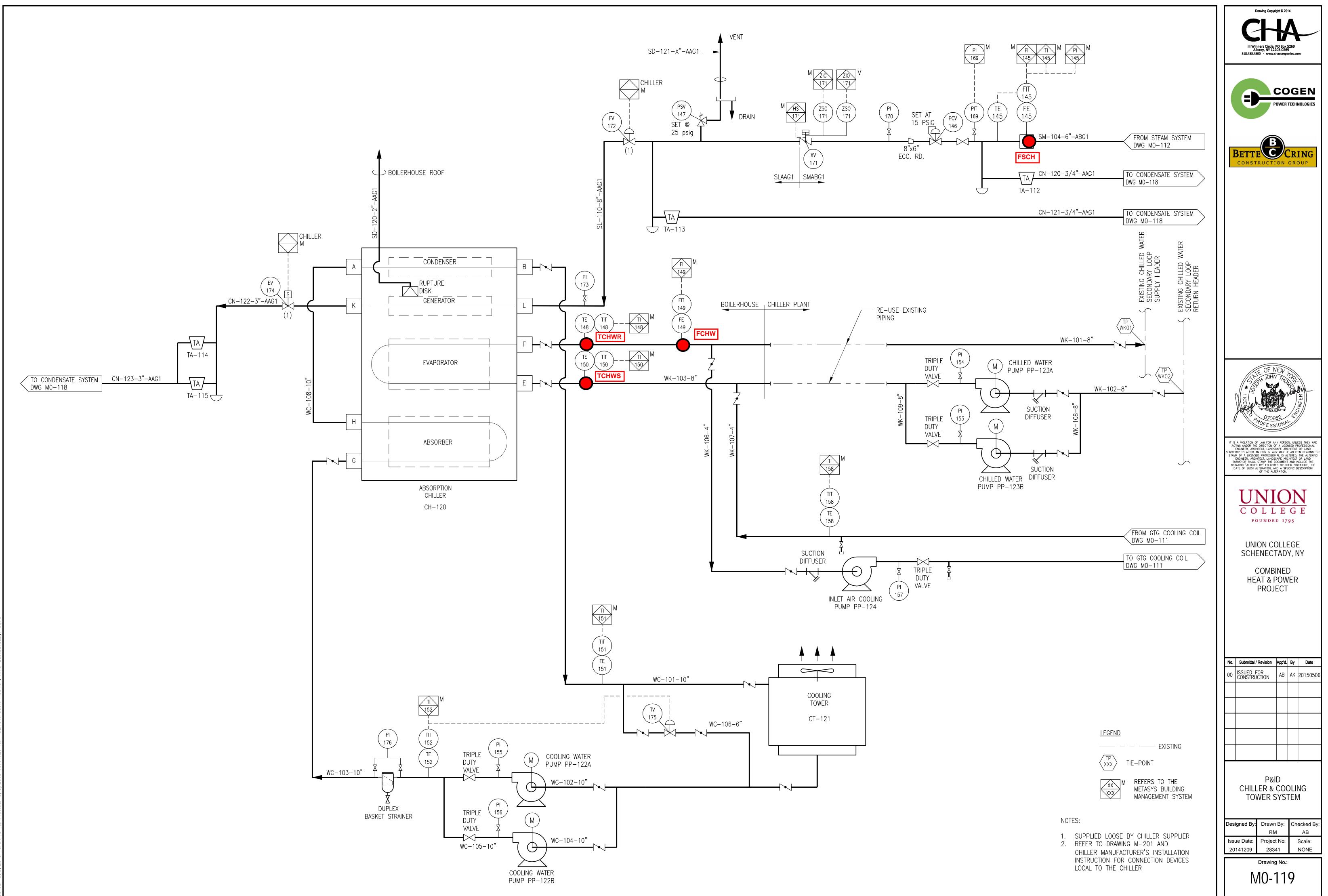


FROM STEAM SYSTEM	CN-101-3/4"-AAG1				
DWG M0-112					
FROM STEAM SYSTEM DWG M0-112	CN-102-3/4"-AAG1				
FROM STEAM SYSTEM DWG M0-113	CN-103-3/4"-AAG1				
FROM STEAM SYSTEM DWG M0-113	CN-104-3/4"-AAG1			VENT	
FROM UH-101 DWG M0-113	CN-105-3/4"-AAG1			≜	401 1
FROM STEAM SYSTEM	CN-106-3/4"-AAG1	/2"–AAG1		CN-113-1"-AAG1	CN-114-1"-AAG1
FROM UH-102 DWG M0-113	CN-107-3/4"-AAG1	CN-116-1 1/		5	- - -
	7		CN-112-2"-A	AG1	
FROM STEAM SYSTEM DWG M0-113	CN-108-3/4"-AAG1	1 /2"-AAG1	<u></u>		\
FROM UH-103 DWG M0-113	CN-109-3/4"-AAG1	CN-117-1		СС	٩C
FROM STEAM SYSTEM	CN-110-3/4"-AAG1			COND	
FROM UH-104 DWG M0-113	CN-111-3/4"-AAG1			COND	'L
FROM STEAM SYSTEM	CN-130-3/4"-AAG1				


CN-101-3/4"-AAG1

EXISTING	CONDENSATE	
RETURN		


CITY WATER



	Drawing Copyright © 2014 CCH-CA III Winners Circle, PO Box 5269 Albany, NY 12205-0269 518.453.4500 · www.chacompanies.com
	COGEN POWER TECHNOLOGIES
	BETTE CRING CONSTRUCTION GROUP
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
TE 140 140 TO DEAERATOR DWG MO-114	CINE OF NEW JOAN CINE O
RECIRC. HEADER DWG MO-114 CN-123-3"-AAG1 FROM ABSORPTION CHILLER	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.
CN-123-3"-AAG1 FROM ABSORPTION CHILLER DWG M0-119 CN-121-3/4"-AAG1 FROM STEAM SYSTEM DWG M0-119	COLLEGE FOUNDED 1795
CN-120-3/4"-AAG1 FROM STEAM SYSTEM DWG M0-119	UNION COLLEGE SCHENECTADY, NY
	COMBINED HEAT & POWER PROJECT
	No.Submittal / RevisionApp'd.ByDate00ISSUED FOR CONSTRUCTIONABAK20150506
<u>LEGEND</u> ————————————————————————————————————	CONDENSATE SYSTEM
NOTES:	Designed By:Drawn By:Checked By:RMABIssue Date:Project No:Scale:2014120928341NONE
1. NYSERDA METERING POINT 2. SUPPLIED LOOSE BY CONDENSATE TANK SUPPLIER	Drawing No.: M0-118

× .

Appendix B - Cut Sheets for Key Sensors and Instruments

SEL-751A Feeder Protection Relay

Major Features and Benefits

The SEL-751A Feeder Protection Relay provides an exceptional combination of protection, monitoring, control, and communication in an industrial package.

- ➤ Standard Protection Features. Protect lines and equipment with phase, negative-sequence, residual-ground, and neutral-ground overcurrent elements. Implement load shedding and other control schemes with current-based over- and underfrequency and breaker failure protection for one three-pole breaker.
- ➤ Optional Arc-Flash Protection. Use the SEL-751A with optional four-channel fiber-optic arc-flash detector inputs and protection elements. Settable arc-flash phase and neutral overcurrent elements combined with arc-flash light detection elements provide secure, reliable, and fast acting arc-flash event protection.

► Optional Protection Features. Use the SEL-751A with one of the voltage input options to provide over- and

underfrequency, rate-of-change of frequency, fast rate-of-change of frequency (for Aurora vulnerability mitigation), measured residual current input CT, over- and undervoltage, synchronism-check, dc station battery monitor, arc-flash, power elements, and demand metering elements.

- ➤ **Operator Controls and Reclosing**. Easy tripping and closing of the breaker with four programmable front-panel pushbuttons. Implement remote and local control functions, and selectively reclose with synchronism and voltage checks (optional).
- ► Relay and Logic Settings Software. ACSELERATOR QuickSet[®] SEL-5030 Software reduces engineering costs for relay settings and logic programming. Tools in ACSELERATOR QuickSet make it easy to develop SELOGIC[®] control equations.
- ► Metering and Monitoring. Use built-in metering functions to eliminate separately mounted metering devices. Analyze Sequential Events Recorder (SER) reports and oscillographic event reports for rapid commissioning, testing, and post-fault diagnostics. Unsolicited SER protocol allows station-wide collection of binary SER messages. The arc-flash detection option provides light metering and event reports for commissioning and arc-flash event capture for analysis.
- ► Wye or Delta Voltage Inputs. Optional voltage inputs allow for either wye-connected, open-delta-connected, or single voltage inputs to the relay.
- Additional Standard Features. The SEL-751A also includes Modbus[®] RTU, Event Messenger support, MIRRORED BITS[®] communications, load profile, breaker wear monitoring, support for 12 external RTDs (SEL-2600), IRIG-B input, advanced SELOGIC, and IEEE C37.118-compliant synchrophasor protocol.
- Optional Features. Select from a wide offering of optional features, including IEC 61850, DNP3 serial and LAN/WAN, Modbus TCP/IP, Simple Network Time Protocol (SNTP), 10 internal RTDs, expanded digital/analog I/O, voltage inputs, arc-flash fiber-optic inputs, additional EIA-232 or EIA-485 communication ports, fiber-optic serial port, single or dual, copper-wire or fiber-optic Ethernet ports, and configurable labels.

Specifications

Compliance

ISO 9001:2008 Certified	
UL, cUL [*] :	Protective Relay Category NRGU, NRGU7 per UL 508, C22.2 No. 14

* UL has not yet developed requirements for products intended to detect and mitigate an arc flash; consequently, UL has not evaluated the performance of this feature. While UL is developing these requirements, it will place no restriction on the use of this product for arc-flash detection and mitigation. For test results performed by an independent laboratory and other information on the performance and verification of this feature, please contact SEL customer service.

CSA:	C22.2 No. 61010-1
CE:	CE Mark-EMC Directive
	Low Voltage Directive
	IEC 61010-1:2001
	IEC 60947-1
	IEC 60947-4-1
	IEC 60947-5-1
Hazardous Locations	Complies with UL 1604, ISA
Approvals:	12.12.01, CSA 22.2 No. 213, and
	EN 60079-15 (Class I, Division 2).

General

AC Current Input

Phase, Neutral, and Residual Currents

	$I_{NOM} = 1$ A, 5 A, 50 mA, or 2.5 mA (high sensitivity) secondary depending on model.		
	INOM = 5 A		
	Continuous Rating:	15 A, linear to 100 A symmetrical	
	1 Second Thermal	500 A	
	Burden (Per Phase):	< 0.1 VA @ 5 A	
	INOM = 1 A		
	Continuous:	3 A, linear to 20 A symmetrical	
	1 Second Thermal	100 A	
	Burden (Per Phase):	< 0.01 VA @ 1 A	
	INOM = 50 mA		
	Continuous Rating:	3 A, linear to 1000.0 mA symmetrical	
	1 Second Thermal	100 A	
	Burden (Per Phase):	<2 mVA @ 50 mA	
	INOM = 2.5 mA		
	Continuous Rating:	3 A, linear to 12.50 mA symmetrical	
	1 Second Thermal	100 A	
	Burden (Per Phase):	<0.1 mVA @ 2.5 mA	
	Measurement Category:	П	
AC Voltage Inputs			
	VNOM (L-L) Setting Range:	20–250 V (if DELTA_Y := DELTA) 20–440 V (if DELTA_Y := WYE)	
	Rated Continuous Voltage:	300 Vac	
	10 Second Thermal:	600 Vac	
	Burden:	< 0.1 VA	

 $10 \text{ M}\Omega$ differential (phase-phase)

5 M Ω common mode (phase-

chassis)

Power Supply

125/250 Vdc or 120/240 Vac

Rated Supply Voltage:	110–240 Vac, 50/60 Hz 110–250 Vdc
Input Voltage Range:	85–264 Vac 85–300 Vdc
Power Consumption:	< 40 VA (ac) < 20 W (dc)
Interruptions:	50 ms @ 125 Vac/Vdc 100 ms @ 250 Vac/Vdc
24/48 Vdc	
Rated Supply Voltage:	24-48 Vdc
Input Voltage Range:	19.2-60 Vdc
Power Consumption:	< 20 W (dc)
Interruptions:	10 ms @ 24 Vdc 50 ms @ 48 Vdc

Output Contacts

General

General		
	г 4 DÌ/3 DÒ	at, all other outputs are Form A, except card, which supports one Form B and
Mechanical Dur	ability:	100,000 no load operations
Pickup/Dropout Time:		≤ 8 ms (coil energization to contact closure)
DC Output Ratin	igs	
Rated Operational Voltage:		250 Vdc
Rated Voltage R	ange:	19.2–275 Vdc
Rated Insulation Voltage:		300 Vdc
Make:		30 A @ 250 Vdc per IEEE C37.90
Continuous Carry:		6 A @ 70°C 4 A @ 85°C
Thermal:		50 A for 1 s
Contact Protection:		360 Vdc, 40 J MOV protection across open contacts
Breaking Capac	ity (10,000 (Operations) per IEC 60255-0-20:1974:
24 Vdc	0.75 A	L/R = 40 ms
48 Vdc	0.50 A	L/R = 40 ms
125 Vdc	0.30 A	L/R = 40 ms
250 Vdc	0.20 A	L/R = 40 ms
Cyclic (2.5 Cycl	es/Second)	per IEC 60255-0-20:1974:
24 Vdc	0.75 A	L/R = 40 ms
48 Vdc	0.50 A	L/R = 40 ms
125 Vdc	0.30 A	L/R = 40 ms
250 Vdc	0.20 A	L/R = 40 ms
AC Output Ratir	igs	
Maximum Oper Voltage (U _e) R		240 Vac
Insulation Voltage (U _i) Rating (Excluding		-
EN 61010-1):		300 Vac

Input Impedance:

Utilization Category:	AC-15 (control of electromagnetic loads > 72 VA)
Contact Rating Designation:	B300 (B = 5 A, 300 = rated insulation voltage)
Voltage Protection Across Open Contacts:	270 Vac, 40 J
Rated Operational Current (I _e):	3 A @ 120 Vac 1.5 A @ 240 Vac
Conventional Enclosed Thermal Current (I _{the}) Rating:	5 A
Rated Frequency:	$50/60 \pm 5$ Hz
Electrical Durability Make VA Rating:	3600 VA, $\cos \phi = 0.3$
Electrical Durability Break VA Rating:	360 VA, $\cos \phi = 0.3$

UL/CSA Digital Output Contact Temperature Derating for Operating at Elevated Temperatures

Digital Output Cards Installed	Operating Ambient	Maximum Value of Current (I _{the})	Duty Factor
1–3	less than or equal to 60°C	5.0 A	Continuous
1–3	between 60°C and 70°C	2.5 A	Continuous

Fast Hybrid (High-Speed, High-Current Interrupting)

Make:	30 A
Carry:	6 A continuous carry at 70°C 4 A continuous carry at 85°C
1 s Rating:	50 A
Open State Leakage Current:	$< 100 \ \mu A$
MOV Protection (Maximum Voltage):	250 Vac/330 Vdc
Pickup Time:	$< 50 \ \mu s$, resistive load
Dropout Time:	< 8 ms, resistive load
Break Capacity (10000 Operation	tions):

48 Vdc	10.0 A	L/R = 40 ms
125 Vdc	10.0 A	L/R = 40 ms
250 Vdc	10.0 A	L/R = 20 ms

Cyclic Capacity (4 cycles in 1 second, followed by 2 minutes idle for thermal dissipation): 48 Vdc 10.0 A L/R = 40 ms

125 Vdc	10.0 A	L/R = 40 ms
250 Vdc	10.0 A	L/R = 20 ms

NOTE: Per IEC 60255-23:1994, using the simplified method of assessment.
 NOTE: Make rating per IEEE C37.90-1989.

Optoisolated Control Inputs

When Used With DC Control Signals

250 V:	ON for 200–312.5 Vdc OFF below 150 Vdc
220 V:	ON for 176–275 Vdc OFF below 132 Vdc
125 V:	ON for 100–156.2 Vdc OFF below 75 Vdc
110 V:	ON for 88–137.5 Vdc OFF below 66 Vdc
48 V:	ON for 38.4–60 Vdc OFF below 28.8 Vdc
24 V:	ON for 15–30 Vdc OFF for < 5 Vdc

When Used With AC Control Signals 250 V: ON for 170.6-312.5 Vac OFF below 106 Vac ON for 150.2-275 Vac 220 V: OFF below 93.3 Vac 125 V: ON for 85-156.2 Vac OFF below 53 Vac 110 V: ON for 75.1-137.5 Vac OFF below 46.6 Vac 48 V: ON for 32.8-60 Vac OFF below 20.3 Vac 24 V: ON for 14-30 Vac OFF below 5 Vac Current Draw at Nominal DC 2 mA (at 220-250 V) Voltage: 4 mA (at 48-125 V) 10 mA (at 24 V) Rated Impulse Withstand Voltage (Uimp): 4000 V Analog Output (Optional) 1A0 4A0 Current: 4-20 mA ±20 mA Voltage: ±10 V Load at 1 mA: 0-15 kΩ Load at 20 mA: 0-300 Ω 0-750 Ω Load at 10 V: $> 2000 \Omega$ Refresh Rate: 100 ms 100 ms % Error, Full Scale, at 25°C: $<\pm1\%$ $< \pm 0.55\%$ Select From: Analog quantities available in the relay Analog Inputs (Optional) Maximum Input Range: ±20 mA $\pm 10 \ V$ Operational range set by user Input Impedance: 200Ω (current mode) $>10 \text{ k}\Omega$ (voltage mode) Accuracy at 25°C: With User Calibration: 0.05% of full scale (current mode) 0.025% of full scale (voltage mode) Without User Calibration: Better than 0.5% of full scale at 25°C Accuracy Variation With $\pm 0.015\%$ per °C of full-scale Temperature: (±20 mÅ or ±10 V) Arc-Flash Detectors (Optional) Multimode fiber-optic receiver/transmitter pair Fiber Type: 1000 µm diameter, 640 nm wavelength, plastic, clear-jacketed or black-jacketed Connector Type: V-Pin Frequency and Phase Rotation System Frequency: 50, 60 Hz ABC, ACB Phase Rotation: Frequency Tracking: 15-70 Hz **Time-Code Input** Demodulated IRIG-B Format: On (1) State: $V_{ih} \ge 2.2 V$ Off (0) State: $V_{il} \le 0.8 \text{ V}$ $2 \, k\Omega$ Input Impedance:

Synchronization Accuracy		Typical TX Power:	-12 dBm
Internal Clock:	±1 µs	RX Min. Sensitivity:	-39 dBm
Synchrophasor Reports		Fiber Size:	1000 µm
(e.g., MET PM): All Other Reports:	±10 μs ±5 ms	Approximate Range:	To 35 m (F To 70 m (C
Simple Network Time Proto	ocol (SNTP) Accuracy		Sensor)
Internal Clock:	±5 ms	Data Rate:	NA
Unsynchronized Clock Drift		Typical Fiber Attenuation:	-0.15 dB/r
Relay Powered:	2 minutes per year, typically	Optional Communications Car	ds
Communications Ports		Option 1:	EIA-232 o
Standard EIA-232 (2 Ports)		Option 2.	commun DeviceNet
Location:	Front Panel	Option 2:	Devicemen
Data Garal	Rear Panel	Communications Protocols	
Data Speed:	300–38400 bps	SEL, Modbus, DNP3, FTP, To MIRRORED BITS, EVMSG, O	
EIA-485 Port (Optional)		DeviceNet.	
Location:	Rear Panel	Operating Temperature	
Data Speed:	300–19200 bps	IEC Performance Rating (Per	
Ethernet Port (Optional)		IEC/EN 60068-2-1 &	100 0
Single/Dual 10/100BASE- Single/Dual 100BASE-FX	T copper (RJ45 connector)	60068-2-2):	-40° to +8
Multimode Fiber-Optic Port		NOTE: Not applicable to UL NOTE: LCD contrast impaire above +70°C.	
Location:	Rear panel	DeviceNet Communications	
Data Speed:	300–38400 bps	Card Rating:	+60°C (14
Fiber-Optic Ports Characteri	stics	Operating Environment	
Port 1 (or 1A, 1B) Ethernet		Pollution Degree:	2
Wavelength:	1300 nm	Overvoltage Category:	II
Optical Connector Type:	LC	Atmospheric Pressure:	80–110 kP
Fiber Type:	Multimode	Relative Humidity:	5–95%, no
Link Budget:	16.1 dB	Maximum Altitude:	2000 m
Typical TX Power:	–15.7 dBm	Dimensions	
RX Min. Sensitivity:	-31.8 dBm	144.0 mm (5.67 in.) x 192.0 n	nm (7.56 in.)
Fiber Size:	62.5/125 μm	Weight	
Approximate Range:	~6.4 Km	•	
Data Rate:	100 Mb	2.7 kg (6.0 lbs)	
Typical Fiber Attenuation:	-2 dB/Km	Relay Mounting Screws (#8-3	
Port 2 Serial		Minimum:	1.4 Nm (1
Wavelength:	820 nm	Maximum:	1.7 Nm (1
Optical Connector Type:	ST	Terminal Connections	
Fiber Type:	Multimode	Terminal Block	
Link Budget:	8 dB	Screw Size:	#6
Typical TX Power:	-16 dBm	Ring Terminal Width:	0.310" ma
RX Min. Sensitivity:	-24 dBm	Terminal Block Tightening Te	oraue
Fiber Size:	62.5/125 μm	Minimum:	0.9 Nm (8
Approximate Range:	~1 Km	Maximum:	1.4 Nm (12
Data Rate:	5 Mb	Compression Plug Tightenin	
Typical Fiber Attenuation:	–4 dB/Km	Minimum:	0.5 Nm (4.
Channels 1-4 Arc-Flash Det	tectors (AFDI)	Maximum:	1.0 Nm (8.
Wavelength:	640 nm	Compression Plug Mounting	
Optical Connector Type:	V-Pin	Minimum:	0.18 Nm (
1 · · · · · · · · · · · · · · · · · · ·		iviiiiiiiuiii.	0.10 1411 (
Fiber Type:	Multimode	Maximum:	0.25 Nm (2

Typical TX Power:	-12 dBm
RX Min. Sensitivity:	-39 dBm
Fiber Size:	1000 µm
Approximate Range:	To 35 m (Point Sensor) To 70 m (Clear-Jacketed Fiber Sensor)
Data Rate:	NA
Typical Fiber Attenuation:	-0.15 dB/m
tional Communications Card	S
Option 1:	EIA-232 or EIA-485 communications card
Option 2:	DeviceNet communications card
nmunications Protocols	
SEL, Modbus, DNP3, FTP, TC MIRRORED BITS, EVMSG, C DeviceNet.	P/IP, Telnet, SNTP, IEC 61850, 37.118 (synchrophasors) and
erating Temperature	
EC Performance Rating (Per IEC/EN 60068-2-1 & 60068-2-2):	-40° to +85°C (-40° to +185°F)
NOTE: Not applicable to UL a	· · · · · · · · · · · · · · · · · · ·
DeviceNet Communications Card Rating:	+60°C (140°F) maximum
erating Environment	
Pollution Degree:	2
Overvoltage Category:	П
Atmospheric Pressure:	80–110 kPa
Relative Humidity:	5-95%, noncondensing
Maximum Altitude:	2000 m
nensions	
144.0 mm (5.67 in.) x 192.0 m	m (7.56 in.) x 147.4 mm (5.80 in.)
ight	
2.7 kg (6.0 lbs)	
ay Mounting Screws (#8-32) Tiahtenina Toraue
Minimum:	1.4 Nm (12 in-lb)
Maximum:	1.7 Nm (15 in-lb)
minal Connections	
erminal Block	
Screw Size:	#6
Ring Terminal Width:	0.310" maximum
erminal Block Tightening To	rque
Minimum:	0.9 Nm (8 in-lb)
Maximum:	1.4 Nm (12 in-lb)
ompression Plug Tightening	I Torque
Minimum:	0.5 Nm (4.4 in-lb)
Maximum:	1.0 Nm (8.8 in-lb)
	Ear Screw Tightening Torque
Minimum:	0.18 Nm (1.6 in-lb)
NC 1	0.05 M. (0.0 1. 11)

0.25 Nm (2.2 in-lb)

Type Tests		Surge Withstand Capability Immunity:	IEC 60255-22-1:2007 2.5 kV common mode
Environmental Tests			1 kV differential mode
Enclosure Protection:	IEC 60529:2001 + CRDG:2003 IP65 enclosed in panel IP20 for terminals IP54 rated terminal dust protection assembly (SEL Part #915900170).		1 kV common mode on comm. ports IEEE C37.90.1-2002 2.5 kV oscillatory 4 kV fast transient
	10°C temperature derating applies to the temperature specifications of the relay.	Conducted RF Immunity:	IEC 61000-4-6:2008 IEC 60255-22-6: 2001 10 Vrms
Vibration Resistance:	IEC 60068-2-6:2007 3 G, 10–150 Hz IEC 60255-21-1:1988, Class 1 IEC 60255-21-3:1993, Class 2	Magnetic Field Immunity:	IEC 61000-4-8:2009 1000 A/m for 3 seconds 100 A/m for 1 minute IEC 61000-4-9: 2001 1000 A/m
Shock Resistance:	IEC 60255-21-2:1988, Class 1	Power Supply Immunity:	IEC 60255-11:2008
Cold:	IEC 60068-2-1:2007 -40°C, 16 hours	EMC Emissions	IEC 00255-11.2000
Damp Heat, Steady State:	IEC 60068-2-78:2001		EN 55011,1009 Class A
Dump Hour, Steady State.	40°C, 93% relative humidity, 4 days	Conducted Emissions:	EN 55011:1998, Class A IEC 60255-25:2000
Damp Heat, Cyclic:	IEC 60068-2-30:2005 25–55°C, 6 cycles, 95% relative	Radiated Emissions:	EN 55011:1998, Class A IEC 60255-25:2000
	humidity	Electromagnetic Compatibili	
Dry Heat:	IEC 60068-2-2:2007	Product Specific:	EN 50263:1999
Dislastria Chromath and Imag	85°C, 16 hours	Processing Specifications	and Oscillography
Dielectric Strength and Impu Dielectric (HiPot):	IISE IESTS IEC 60255-5:2000	AC Voltage and Current Inputs:	16 samples per power system cyc
	IEEE C37.90-2005	Frequency Tracking Range:	15–70 Hz
	2.5 kVac on current inputs, ac voltage inputs, contact I/O2.0 kVac on analog inputs1.0 kVac on analog outputs2.83 kVdc on power supply	Digital Filtering:	One-cycle cosine after low-pass analog filtering. Net filtering (analog plus digital) rejects dc and all harmonics greater than the fundamental.
Impulse:	IEC 60255-5:2000 IEEE C37.90-2005 0.5 J, 4.7 kV on power supply, contact I/O, ac current and voltage inputs	Protection and Control Processing:	Processing interval is 4 times per power system cycle (except for math variables and analog quantities, which are processed every 100 ms)
	0.5 J, 530 V on analog outputs	Arc-Flash Processing:	Arc-flash light is sampled 32 time
RFI and Interference Tests EMC Immunity			per cycle. Arc-flash current, light, and 2 fast hybrid outputs are processed 16
Electrostatic Discharge Immunity:	IEC 61000-4-2:2008 IEC 60255-22-2:2008 Severity Level 4	Oscillography	times per cycle.
	8 kV contact discharge	Length:	15 or 64 cycles
	15 kV air discharge	Sampling Rate:	16 samples per cycle, unfiltered
Radiated RF Immunity:	IEC 61000-4-3:2010 IEC 60255-22-3:2007		4 samples per cycle, filtered
	10 V/m IEEE C37.90.2-2004	Trigger:	Programmable, using Boolean expressions
	35 V/m	Format:	ASCII and Compressed ASCII
Digital Radio	END/ 50204 1005	Time-Stamp Resolution:	1 ms
Telephone RF Immunity:	ENV 50204:1995	Time-Stamp Accuracy:	±5 ms
Fast Transient, Burst Immunity:	IEC 61000-4-4:2004 IEC 60255-22-4:2008	Sequential Events Recorder	1 mc
	4 kV @ 5.0 kHz 2 kV @ 5.0 kHz for comm. ports	Time-Stamp Resolution:	1 ms
Surge Immunity:	IEC 61000-4-5:2005	Time-Stamp Accuracy (With Respect to Time Source):	±5 ms

IEC 60255-22-5:2008 2 kV line-to-line 4 kV line-to-earth

Relay Elements	
Instantaneous/Definite-Time (Overcurrent (50P, 50G, 50N, 50Q)
Pickup Setting Range, A Seco	ondary
5 A Models:	0.50-100.00 A, 0.01 A steps
1 A Models:	0.10-20.00 A, 0.01 A steps
50 mA Models:	5.0-1000.0 mA, 0.1 mA steps
2.5 mA Models:	0.13-12.50 mA, 0.01 mA steps
(The 50N elements in the 2.5 30 ms security qualifier time	mA and 50 mA models have a built-in e delay.)
Accuracy:	$\pm 5\%$ of setting plus ± 0.02 • I_{NOM} A secondary (steady-state pickup)
Time Delay:	0.00-5.00 seconds, 0.01 seconds steps
Pickup/Dropout Time:	<1.5 cycles
Arc-Flash Instantaneous Over	current (50PAF, 50NAF)
Pickup Setting Range, A Seco	ondary
5 A Models:	0.50-100.00 A, 0.01 A steps
1 A Models:	0.10–20.00 A, 0.01 A steps
Accuracy:	0 to +10% of setting plus ± 0.02 • I_{NOM} A secondary (steady-state pickup)
Pickup/Dropout Time:	2-5 ms/1 cycle
Arc-Flash Time-Overlight (TOL	.1-TOL4)
Pickup Setting Range, % of Full Scale:	3.0–20.0% (Point Sensor) 0.6–4.0% (Fiber Sensor)
Pickup/Dropout Time:	2–5 ms/1 cycle
Inverse-Time Overcurrent (51F	P, 51G, 51N, 51Q)
Pickup Setting Range, A Seco	ondary:
5 A Models:	0.50-16.00 A, 0.01 A steps
1 A Models:	0.10-3.20 A, 0.01 A steps
50 mA Models:	5.0–160.0 mA, 0.1 mA steps
2.5 mA Models:	0.13–2.00 mA, 0.01 mA steps
Accuracy:	$\pm 5\%$ of setting plus $\pm 0.02 \bullet I_{NOM}$ A secondary (steady-state pickup)
Time Dial:	
U.S.:	0.50-15.00, 0.01 steps
IEC:	0.05-1.00, 0.01 steps
Accuracy:	±1.5 cycles, plus ±4% between 2 and 30 multiples of pickup (within rated range of current)
Undervoltage (27)	
Vnm := VNOM if DELTA_Y Vnm := VNOM/1.732 if DEL	
Setting Range:	Off, 0.02–1.00 • Vnm
Accuracy:	$\pm 1\%$ of setting plus ± 0.5 V ($\pm 5\%$ of setting ± 2 V with the <i>xx</i> 71 <i>xx</i> card)
Pickup/Dropout Time:	< 1.5 cycles
Overvoltage (59, 59G, 59Q)	
Vnm := VNOM if DELTA_Y Vnm := VNOM/1.732 if DEL	
Setting Range:	Off, 0.02–1.20 • Vnm

 \pm 1% of setting plus \pm 0.5 V (\pm 5% of setting \pm 2 V with the *xx*71*xx* card)

< 1.5 cycles

Power Elements (32)

Power Liements (32)	
Instantaneous/Definite Time, 3 Phase Elements Type:	+W, -W, +VAR, -VAR
Pickup Setting Range, VA Sec	ondary:
5 A Models:	1.0-6500.0 VA, 0.1 VA steps
1 A Models:	0.2-1300.0 VA, 0.1 VA steps
Accuracy:	$ \pm 0.10 \text{ A} \cdot (\text{L-L voltage secondary}) \\ and \pm 5\% \text{ of setting at unity power} \\ factor for power elements and zero \\ power factor for reactive power \\ elements (5 A nominal) \\ \pm 0.02 \text{ A} \cdot (\text{L-L voltage secondary}) \\ and \pm 5\% \text{ of setting at unity power} \\ factor for power elements and zero \\ power factor for reactive power \\ elements (1 A nominal) \\ \end{cases} $
Pickup/Dropout Time:	< 10 cycles
Power Factor (55)	
Setting Range:	Off, 0.05–0.99
Accuracy:	$\pm 5\%$ of full scale for current $\ge 0.5 \bullet I_{NOM}$
Frequency (81)	
Setting Range:	Off, 20.00–70.00 Hz
Accuracy:	± 0.01 Hz (V1 > 60 V) with voltage tracking ± 0.05 Hz (I1 > 0.8 \bullet $I_{NOM})$ with current tracking
Pickup/Dropout Time:	< 4 cycles
Rate-of-Change of Frequency (81R)
Catting Damage	Off 0 10 15 00 Hz/a
Setting Range:	Off, 0.10–15.00 Hz/s
Accuracy:	±100 mHz/s, plus ±3.33% of pickup
Accuracy:	
Accuracy: Synchronism Check (25) Pickup Range, Secondary	± 100 mHz/s, plus $\pm 3.33\%$ of pickup
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V)
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V)
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80°
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4°
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4°
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervoltz Setting Range: Accuracy:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V)
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervoltz Setting Range: Accuracy:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range: Accuracy: Pickup/Dropout Time:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range: Accuracy: Pickup/Dropout Time: Synchronism-Check Overvoltage Setting Range: Accuracy:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles ge (59S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V)
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range: Accuracy: Pickup/Dropout Time: Synchronism-Check Overvoltag	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles ge (59S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range: Accuracy: Pickup/Dropout Time: Synchronism-Check Overvoltage Setting Range: Accuracy:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles ge (59S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range: Accuracy: Pickup/Dropout Time: Setting Range: Accuracy: Pickup/Dropout Time:	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles ge (59S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles
Accuracy: Synchronism Check (25) Pickup Range, Secondary Voltage: Pickup Accuracy, Secondary Voltage: Slip Frequency Pickup Range: Slip Frequency Pickup Accuracy: Phase Angle Range: Phase Angle Accuracy: Synchronism-Check Undervolta Setting Range: Accuracy: Pickup/Dropout Time: Synchronism-Check Overvoltage Setting Range: Accuracy: Pickup/Dropout Time: Station Battery Voltage Monitor	±100 mHz/s, plus ±3.33% of pickup 0.00–300.00 V ±1% plus ±0.5 volts (over the range of 12.5–300 V) 0.05 Hz–0.50 Hz ±0.05 Hz 0–80° ±4° age (27S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles ge (59S) Off, 2.00–300.00 V ±1% of setting plus ±0.5 V (over the range of 12.5–300 V) < 1.5 cycles or 0–350 Vdc (300 Vdc for UL

Accuracy:

Pickup/Dropout Time:

Timers	
Setting Range:	Various
Accuracy:	$\pm 0.5\%$ of setting plus $\pm 1/4$ cycle
RTD Protection	
Setting Range:	Off, 1–250°C
Accuracy:	±2°C
RTD Open-Circuit Detection:	> 250°C
RTD Short-Circuit Detection:	$< -50^{\circ}C$
RTD Types:	PT100, NT100, NI120, CU10
RTD Lead Resistance:	25 ohm max. per lead
Update Rate:	< 3 s
Noise Immunity on RTD Inputs:	To 1.4 Vac (peak) at 50 Hz or greater frequency
RTD Trip/Alarm Time Delay:	Approx. 6 s

Metering

Accuracies are specified at 20°C, nominal frequency, ac currents within (0.4–20.0) • I_{NOM} A secondary, and ac voltages within 50–250 V secondary unless otherwise noted.

Phase Currents:	$\pm 2\%$ of reading, $\pm 2^{\circ}$
3-Phase Average Current:	$\pm 2\%$ of reading
Current Imbalance (%):	$\pm 2\%$ of reading
IG (Residual Current):	$\pm 3\%$ of reading, $\pm 2^{\circ}$
IN (Neutral Current):	$\pm 2\%$ of reading, $\pm 2^{\circ}$
3I2 Negative-Sequence Current:	±3% of reading
System Frequency:	± 0.01 Hz of reading for frequencies within 20.00–70.00 Hz (V1 > 60 V) with voltage tracking ± 0.05 Hz of reading for frequencies within 20.00–70.00 Hz

(I1 > 0.8 • I_{NOM}) with current tracking

Line-to-Line Voltages:	$\pm 1\%$ of reading ($\pm 2\%$ with the <i>xx71.xx</i> card), $\pm 1^{\circ}$ for voltages within 24–264 V
3-Phase Average Line-to- Line Voltage:	$\pm 1\%$ of reading ($\pm 2\%$ with the <i>xx</i> 71 <i>xx</i> card) for voltages within 24–264 V
Line-to-Ground Voltages:	$\pm 1\%$ of reading ($\pm 2\%$ with the <i>xx</i> 71 <i>xx</i> card), $\pm 1^{\circ}$ for voltages within 24–264 V
3-Phase Average Line-to- Ground Voltages:	$\pm 1\%$ of reading ($\pm 2\%$ with the <i>xx</i> 71 <i>xx</i> card) for voltages within 24–264 V
Voltage Imbalance (%):	$\pm 1\%$ of reading ($\pm 2\%$ with the <i>xx</i> 71 <i>xx</i> card) for voltages within 24–264 V
3V2 Negative-Sequence Voltage:	±3% of reading for voltages within 24–264 V
Real 3-Phase Power (kW):	$\pm 5\%$ of reading for $0.10 < pf < 1.00$
Reactive 3-Phase Power (kVAR):	$\pm 5\%$ of reading for $0.00 < pf < 0.90$
Apparent 3-Phase Power (kVA):	±2% of reading
Power Factor:	$\pm 2\%$ of reading

 $\pm 2^{\circ}C$

RTD Temperatures:

Notes

© 2008-2015 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

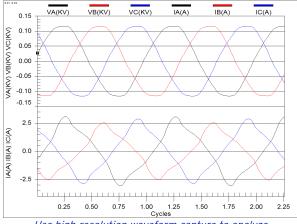
This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative.

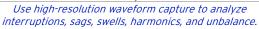
SCHWEITZER ENGINEERING LABORATORIES, INC.

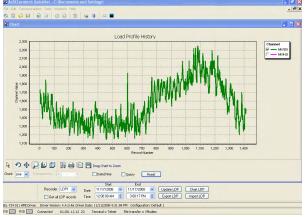
2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 www.selinc.com • info@selinc.com

SEL

SEL-734 Advanced Metering System Advanced Power Quality and Revenue Metering




• 128 MB on SEL-734P



Accurate, comprehensive, and reliable metering for new installations and retrofits.

Features and Benefits

Power Quality Monitoring

Record voltage sag/swell/interruption (VSSI) disturbances, monitor harmonics to the 50th order, capture waveforms, measure flicker, and record sequential events.

Accurate, Bidirectional Metering

Exceeds ANSI C12.20 0.2 and IEC 62053-22 0,2 S accuracy class with bidirectional, full four-quadrant energy metering for generation, interchange, transmission, distribution, or industrial applications.

Standard Software Tools

Easily configure, test, monitor, and retrieve data using ACSELERATOR QuickSet[®] SEL-5030 Software. ACSELERATOR QuickSet quickly programs, retrieves, plots, and exports billing data to .HHF or .CSV formats.

■ Time-of-Use (TOU) Metering

Provides flexible, time-differentiated energy and demand registers, with multiple day types, rates, seasons, and a 20-year programmable calendar. Automation functions include programmable self-reads and peak demand resets.

■ High-Speed Load Profile Data (LDP) Records

Multiple LDP recorders store billing data and power quality data in separate records with a maximum update rate of once every three seconds. ACSELERATOR QuickSet quickly retrieves, plots, and stores load profile data to a laptop computer or remotely over any communications port.

Transformer and Line-Loss Compensation

Enter transformer nameplate and line impedance information directly into the meter to automatically compensate for transformer or line losses and move the billing point.

Complete Automation

Customize alarms and automate control based on measured load information using advanced SELOGIC[®] control equations. Integrate with communications processors for single-point station access.

Industry Standard Compliance

Fully comply with ANSI and IEC standards with voltage and current ranges of: 57–132 V, 132–277 V; CL2, CL10, CL20, IEC 1 A, 5 A I_{NOM}.

Specifications

Compliance

- Designed and manufactured under an ISO 9001 certified quality management system
- ANSI C12.20:2002; Class 0.2, CL2, and CL10/CL20 Radiated Emissions: FCC Part 15; Class A
- IEC 62053-22:2003; Class 0,2 S
- IEC 62052-11; rack-mounted meters
- IEC 62053-23:2003; Class 0,2 S
- C22.2 No. 61010-1-04
- C22.2 No. 142
- UL Listed to U.S. and Canadian safety standards (File E220228; NRAQ, NRAQ7, File E475839; NRAG, NRAG7)
- ERCOT Compliant
- CFG G0000-48-1999 Compliant per LAPEM
- CE: Mark-EMC Directive, Low-Voltage Directive
- Note: Optional modem not CE compliant.

General

AC Voltage Inputs

Meter	Form	9	and	Meter	Form	5

Maximum Rating:	300 V continuous 600 V for 10 seconds	
Range:		
Revenue Accuracy 120 V Option: 240 V Option:	57–132 V 132–277 V	
Measurement 120 V Option: 240 V Option:	0–150 V 0–300 V	
Burden:	0.003 VA @ 120 V 0.02 VA @ 240 V	
Meter Form 9	$300 V_{L-N}$, three-phase, four-wire (wye) connection	
Meter Form 5	300 $V_{L\text{-}L\text{,}}$ three-phase, three-wire (delta) connection	
25 V Low Energy Analog (LEA) Voltage Inputs ^a		

Burden:	10 MΩ
Range:	0.40–25 V
Accuracy at Power Factor 1.0:	0.2%, 0.4–25 V
Accuracy at Power Factor 0.5:	1.0%, 0.4–25 V

AC Current Signal Inputs (Current Transformer Inputs)

current signal inputs (current iransioniner		
Measurement Category:	П	
IA, IB, IC Channels		
Range:		
CL10/CL20 Option:	0.15–20 A	
CL2 Option:	0.010–6 A	
Maximum Rating:	22 A continuous 500 A for 1 second	
Burden:	≤ 0.5 VA	
Starting Load per ANSI	C12.20:	
CL10/CL20 Option:	10 mA	
CL2 Option:	1 mA	

Neutral Channel IN

Range:	
CL10/CL20 Option:	0.15–2.5 A
CL2 Option:	0.010–0.75 A
Maximum Rating:	22 A continuous 500 A for 1 second
Burden:	$\leq 0.5 \text{ VA}$

12 V Low Energy Analog (LEA) Current Inputs^a

Burden:	1 MΩ
Range:	0.1–12.5 V
Accuracy at Power	2%, 0.1–1 V
Factor 1.0:	0.2%, 1–12.5 V
Accuracy at Power	4.0%, 0.1–1 V
Factor 0.5:	0.3%, 1–12.5 V

150 V Low Energy Analog (LEA) Current Inputs^a

Burden:	10 MΩ
Range:	0.4–150 V
Accuracy at Power	1%, 0.4–2 V
Factor 1.0:	0.2%, 2–150 V
Accuracy at Power	1.5%, 0.4–2 V
Factor 0.5:	0.5%, 2–150 V

Frequency and Rotation

60/50 Hz system frequency must be specified at time of order. ABC/ACB phase rotation is user settable. Frequency tracking range: 45 to 65 Hz (VA or VC required for frequency tracking). **Power Supply** Continuous Operating Limits

125/250 Volt Supply:	85–264 Vac (50/60 Hz) 85–275 Vdc	
24/48 Volt Supply:	19-58 Vdc	
12/24 Volt Supply:	9.6-36 Vdc	
VA Rating:	<40 VA/15 W maximum <20 VA/7 W typical	
Interruption (IEC 60255-11:1979)		
100 ms at 250 Vac/Vda		

Ir

100 ms at 250 Vac/Vdc 50 ms at 125 Vac/Vdc	
50 ms at 48 Vdc 10 ms at 24 Vdc	
Ripple (IEC 60255-11:1979):	5% for dc inputs
Terminal Voltage Dropout:	<40 V within 1 minute of power removal
Rated Insulation Voltage (IEC 60664-1:2002):	300 Vac
Dielectric Test Voltage:	2.8 kVdc
Rated Impulse Voltage (IEC 60664-1:2002):	4000 V

UPS With Auxiliary 15 Vdc Power Supply^a

Input	
Power:	52.5 W, maximum
Volt Supply:	85–264 Vac (50/60 Hz) 85–275 Vdc

Voltage Output:14.4–15.6 Vdc (15 Vdc, nominal)Ripple:300 mV (peak-to-peak), maximumTypical Ride-	
Typical Ride-	
Through Time (with 58F SuperCap and 25 W load): 95 seconds	
Load Regulation (10% to 100% rated load): 600 mV (peak-to-peak), maximum	
Load Test Digital Input	
Rated Operating Voltage: 12 Vdc	
Pickup: 9.6–13.2 Vdc	
Dropout: Below 6.0 Vdc	
Auxiliary 15 Vdc Power Supply ^a	
Input	
Power: 52.5 W, maximum	
Volt Supply: 85–264 Vac (50/60 Hz) 85–275 Vdc	
DC Supply Output	
Power: 24 W nominal	
Voltage Output: 14.4–15.6 Vdc (15 Vdc, nominal)	
Ripple: 300 mV (peak-to-peak), maximum	
Load Regulation (10% to 100% rated load): 600 mV (peak-to-peak), maximum	
Output Contacts	
Output ratings were determined with IEC 60255-23:1994, using method of assessment.	g the simplified
Standard Electromechanical	
Make: 30 A per IEEE C37.90-1989	
Carry: 3 A at 120 Vac, 50/60 Hz 1.5 A at 240 Vac, 50/60 Hz	
1 s Rating: 50 A	
Make Rating: $3.6 \text{ kVA}, \text{COS } \theta = 0.3$	
Break Rating: $360 \text{ VA}, \text{COS } \theta = 0.3$	
5	
Durability: >10,000 cycles at rated conditions	
e ,	
Durability: >10,000 cycles at rated conditions	
Durability: >10,000 cycles at rated conditions Pickup/Dropout Time: <35 ms	
Durability:>10,000 cycles at rated conditionsPickup/Dropout Time:<35 ms	
Durability: >10,000 cycles at rated conditions Pickup/Dropout Time: <35 ms	
Durability: >10,000 cycles at rated conditions Pickup/Dropout Time: <35 ms	
Durability: >10,000 cycles at rated conditions Pickup/Dropout Time: <35 ms	
Durability:>10,000 cycles at rated conditionsPickup/Dropout Time: $<35 \text{ ms}$ Maximum Operating Voltage (Ue): 250 V Rated Insulation Voltage (Ui) (excluding EN 61010): 300 V Breaking Capacity (10000 operations): 24 Vdc 0.75 A L/R = 40 ms 48 Vdc 0.50 A L/R = 40 ms 125 Vdc 0.30 A L/R = 40 ms 250 Vdc 0.20 A L/R = 40 ms Cyclic Capacity (2.5 cycles/second):	
Durability:>10,000 cycles at rated conditionsPickup/Dropout Time: $<35 \text{ ms}$ Maximum Operating Voltage (Ue): 250 V Rated Insulation Voltage (Ui) (excluding EN 61010): 300 V Breaking Capacity (10000 operations): 24 Vdc 0.75 A L/R = 40 ms 48 Vdc 0.50 A L/R = 40 ms 250 Vdc 0.20 A L/R = 40 ms 250 Vdc 0.75 A L/R = 40 ms 24 Vdc Output 0.75 \text{ A} $L/R = 40 \text{ ms}$	
Durability:>10,000 cycles at rated conditionsPickup/Dropout Time: $<35 \text{ ms}$ Maximum Operating Voltage (Ue): 250 V Rated Insulation Voltage (Ui) (excluding EN 61010): 300 V Breaking Capacity (10000 operations): 24 Vdc 0.75 A L/R = 40 ms 48 Vdc 0.50 A L/R = 40 ms 125 Vdc 0.30 A L/R = 40 ms 250 Vdc 0.20 A L/R = 40 ms Cyclic Capacity (2.5 cycles/second):	

DC Supply Output

Optional Solid-State Operational Voltage, Continuous 250 Vac/Vdc

Continuous 250 Vac/Vdc			
Maximum On Resistance:	100 mA typical: guaranteed: 30 mA	50 Ω 75 Ω	
	typical: guaranteed:	75 Ω 125 Ω	
	10 mA typical: guaranteed:	125 Ω 200 Ω	
Minimum Off Resistance:	10 MΩ		
Pickup/Dropout Time:	<25 ms		
Optional Electromechanical 30 Amp Contact Outputs (UL Pending) ^a			
Make Rating:	10 kVA, COS $\theta = 1$		
Break Rating:	10 kVA, COS $\theta = 1$		
Carry:	30 A at 120 Vac/240Vac, 50/60 Hz		
Durability:	>100,000 cycles at rated conditions		
Pickup/Dropout Time:	<35 ms		
Maximum Operating Voltage:	240 V		
Rated Insulation Voltage:	300 V		
Optional Solid-State 30 A	mp DC Digital Outputs	a	
Make Operating Voltage:	250 Vdc		
Rated Current:	30 Adc at rated duty and	l operating voltage	
Rated Duty:	Intermittent, 30 Adc for	0.3 s every 5 minutes	
Pickup/Dropout Time:	<25 ms		
Battery Monitor Input ^a			
12 Vdc Option			
12 Vdc Option Full-scale input voltage range:	-20.47 to +20.48 Vdc		
Full-scale input	-20.47 to +20.48 Vdc 0.3% of full-scale		
Full-scale input voltage range:			
Full-scale input voltage range: Error (at 25°C): Voltage input overload	0.3% of full-scale		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous:	0.3% of full-scale 2 x full-scale		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance:	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5%		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution:	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5%		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms		
 Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: 	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: ±1 mA Output	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms		
 Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: 	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms 0 to 4 Hz		
Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: ±1 mA Output Current Range: Minimum Output	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms 0 to 4 Hz ±1.2 mA		
 Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: ±1 mA Output Current Range: Minimum Output Impedance: 	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms 0 to 4 Hz ±1.2 mA 100 MΩ		
 Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: I mA Output Current Range: Minimum Output Impedance: Maximum Output Impedance: 	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms 0 to 4 Hz ±1.2 mA 100 MΩ 10 kΩ, 100 μH		
 Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: ±1 mA Output Current Range: Minimum Output Impedance: Maximum Load: Accuracy: 	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms 0 to 4 Hz ±1.2 mA 100 MΩ 10 kΩ, 100 μH		
 Full-scale input voltage range: Error (at 25°C): Voltage input overload withstand, continuous: Input impedance: Resolution: Analog Outputs Maximum Firmware Update Rate: Maximum settling time for full-range change to 0.1% full-scale: Bandwidth: ±1 mA Output Current Range: Minimum Output Impedance: Maximum Load: Accuracy: 4–20 mA Output 	0.3% of full-scale 2 x full-scale 10 MΩ ±0.5% 62.6 μV/LSB 100 ms 500 ms 0 to 4 Hz ±1.2 mA 100 MΩ 10 kΩ, 100 μH ±0.15% ±0.5 μA		

Maximum Load:	500Ω , $100 \mu H$	Operating Environment		
Accuracy:	$\pm 0.15\% \pm 10 \ \mu A$	Pollution Degree:	2	
Optoisolated Input Rating	S	Overvoltage Category:	II	
DC Control Signal		Indoor Use		
250 Vdc:	Pickup 200–275 Vdc Dropout 150 Vdc	Maximum Altitude: Maximum Humidity:	2000 M 95% RH	
220 Vdc:	Pickup 176–242 Vdc	Weight		
	Dropout 132 Vdc	2.3 kg (5.0 lbs)		
125 Vdc:	Pickup 100–137.5 Vdc Dropout 75 Vdc	Dimensions		
110 Vdc:	Pickup 88–121 Vdc Dropout 66 Vdc	Refer to <i>Figure 2.1</i> for mo Routine Dielectric Test	eter dimensions.	
48 Vdc:	Pickup 38.4–52.8 Vdc	Current Inputs:	2.75 kVac for 1 s	
	Dropout 28.8 Vdc	Voltage Inputs:	2.2 kVac for 1 s	
24 Vdc:	Pickup 15–30 Vdc Dropout <5 Vdc	Optoisolated Inputs and Output Contacts:	2.2 kVac for 1 s	
12 Vdc:	Pickup 9.6–13.2 Vdc		3.11 kVdc for 1 s	
	Dropout <6 Vdc	Power Supply:	1.5 kVdc for 1 s	
AC Control Signal		EIA-485 Port:		
250 Vac:	Pickup 170.6–300 Vac Dropout 106 Vac	IEC 60255-5:2000 Dielectric tests performed on all units	2200 Vdc for 1 s on EIA-485 communications port. 2000 Vac for 1 s on contact inputs, contact outputs, and analog inputs.	
220 Vac:	Pickup 150.3–264 Vac Dropout 93.2 Vac	with the CE mark:	and analog inputs.	
125 Vac:	Pickup 85–150 Vac Dropout 53 Vac	Terminal Connections Rear Screw-Terminal Tig	htening Torque	
110 Vac:	Pickup 75.1–132 Vac Dropout 46.6 Vac	Current Input Terminal Block (ring terminals are recommended)		
48 Vac:	Pickup 32.8–57.6 Vac	Minimum:	0.9 Nm (8 in-lb)	
	Dropout 20.3 Vac	Maximum:	1.4 Nm (12 in-lb)	
24 Vac:	Pickup 14–27 Vac Dropout <5 Vac	Connectorized®		
ΔC mode is selectable for	r each input via Global settings	Minimum:	0.5 Nm (4.4 in-lb)	
IN101D-IN102D and II	N401D–ÎN404D.	Maximum:	1.0 Nm (8.8 in-lb)	
Current draw at nominal of mA) and 24 Vdc (10 mA	lc voltage: 2–6 mA, except for 220 Vdc and 250 Vdc (2 A).	Connectorized terminals a	accept wire size 12–24 AWG.	
Time-Code Input		User terminals or stranded copper wire should be at a minimum temperature rating of 105° C (221°F).		
Meter accepts demodulated IRIG-B time-code input at EIA-232 Port 3 , Port 2 , or 2-pin Phoenix connector. Meter time is synchronized to within ±10 µs of		Processing Specifications		
time-source input.		AC Voltage and Current Inputs		
Nominal Voltage:	$5 \text{ Vdc} \pm 10\%$	16 samples per power system cycle for instantaneous quantities.		
Maximum Voltage:	8 Vdc	8000 samples per second for rms quantities and harmonics.		
Synchronized Phasor Mea	surement	3 dB low-pass filter cut-off frequency of 3000 Hz.		
Max Message Rate:	20 messages/second (Fnom - 60 Hz)	-		

Max. Message Rate:

e e e e e e e e e e e e e e e e e e e	10 messages/second (Fnom = 50 Hz)
Specification is with respect to Synchrophasor Protocol.	to MET PM command and SEL Fast Message
Voltage and Current Accuracy:	Fnom = 60 Hz \pm 5 Hz TVE = 1%
	Fnom = 50 Hz ± 5 Hz TVE = 1% for V1 and I1 TVE = 1% + 50–Fl/10% for VA, VB, VC, IA, IB, IC, VAB, VBC, VCA, IAB, IBC, and ICA
Frequency Accuracy:	\pm 5 mHz for Fnom \pm 9 Hz
Operating Temperature	
IEC 60068-2:	-40° to $+85^{\circ}$ C (-40° to $+185^{\circ}$ F)

20 messages/second (Fnom = 60 Hz)

	`	
Note: Not applicable to UL applications.		

LCD:	-20° to $+70^{\circ}$ C (-4° to $+158^{\circ}$ F)

Metering Accuracy, One-Second Average (rms)

Control Processing

SELOGIC Timers:

Analog Values:

Pickup Ranges: Pickup and Dropout

Timers

25 ms processing interval

SELOGIC Pickup and Accuracies

Accuracy (for all timers):

Metering/Monitoring

ANSI C 12.20 (1998) Accuracies are specified at 23°C and at nominal system frequency, nominal voltage, and nominal current unless noted otherwise.

0.000-1000000.000 s, 25 ms steps

±1 processing interval (25 ms)

 $\pm 25 \text{ ms}$

±3%

Voltages V_A, V_B, V_C: ±0.15%

Voltages V _{AB} , V _{BC} , V _{CA} :	$\pm 0.15\%$
Currents I _A , I _B , I _C :	$\pm 0.15\%$
Current, Neutral I _N :	$\pm 1.0\%$
Frequency:	±0.01 Hz
Energy (kWh), Imported/Exported Total:	class 0.2
Peak Power Demand (kW):	class 0.2
Power (kW) Total:	class 0.2
Power (kW), per Pha	se: class 0.2
Reactive Energy (kVARh) Import/ Export per Phase and Total:	class 0.2
Apparent Energy (kVA	h): class 0.2
Reactive Power (kVA per Phase and Total	
Apparent Power (kV per Phase and Total	
Reactive Power (kVA Peak Demand:	R) class 0.2
Apparent Power (kV Peak Demand:	A) class 0.2
Metering Accuracy, In	stantaneous (25 ms)
Accuracies are speci otherwise.	fied at 23°C and at nominal system frequency unless noted
Voltages V _A , V _B , V _C :	±1%
Voltages V _{AB} , V _{BC} , V	$_{CA}$: ±1%
Currents I _A , I _B , I _C :	±1%
Current, Neutral I _N :	±2%
Frequency:	±0.01 Hz
Power (kW) per Phase and Total:	±2%
Reactive Power (kVAF per Phase and Total:	R) ±2%
Apparent Power (kVA) per Phase and Total:) ±2%
Power Factor, at Unity F	PF: $\pm 2\%$
Harmonic Accuracy pe	er IEC 61000-4-7 (2002-08)
	ondition Max Error for $n \le 25$
c <i>n</i>	$\geq 1\% U_{\rm N} \qquad 5\% UH_n \\ < 1\% U_{\rm N} \qquad 0.05\% U_{\rm N}$
Current $IH_n \ge$	2 3% I _N 5% IH _n
	$< 3\% I_{\rm N}$ 0.15% $I_{\rm N}$ > 150 W sec $PH_n \bullet 5\%$
	< 150 W sec $PH_n = 5\%$ < 150 W sec $PH_n \pm 7.5 W$
order harmonic vol U _N = 120 V or 240 V	nominal voltage and current. UH _n , IH _n , and PH _n are <i>n</i> th tage, current, and power. / (metering voltage option) 5.0 A (CL10 and CL20)
THD and THDG:	$\pm 5\%$ typical, $\pm 10\%$ worst case
K-Factor:	$\pm 5\%$ typical, $\pm 10\%$ worst case
Distortion Power:	$\pm 3\%$ typical, $\pm 10\%$ worst case
Flicker	
P _{ST} :	$\pm 5\%$ over the range 0.5–25 P _{ST} (10-min. interval)
P _{LT} :	$\pm 5\%$ over the range 0.5–25 P _{LT} (2-hour interval)

Integration/Automation

Communications Ports				
A total of five ports is avai	lable.			
bps:	300 to 115200			
Standard Ports				
Optical (ANSI C12.18 Type 2):	Front Panel			
EIA-232:	Rear Panel			
Optional Ports				
EIA-232/ EIA-485/Modem:	Rear Panel, 1.5 kVdc isolation for EIA-485/Modem			
10/100BASE-T Ethernet Port:	Rear Panel			
Fiber-Optic Ethernet Port				
Wavelength:	1300 nm			
Optical Connector Type:	LC			
Fiber Type:	Multimode			
Link Budget:	16.1 dB			
Typical TX Power:	-15.7 dBm			
RX Min. Sensitivity:	-31.8 dBm			
Fiber Size:	62.5/125µm or 50/125µm			
Approximate Range:	~6.4 Km			
Data Rate:	100 Mb			
Typical Fiber Attenuation:	-2 db/Km			

Note: The EIA-232/EIA-485 Modem card functions as a single port, therefore, only one port is available at a time. The optional internal modem complies with Part 68 of the FCC Rules and Regulations.

Type Tests

Electromagnetic Compatibility Immunity

	Surge Withstand Capability:	IEEE C37.90.1-2002 Elec. relays, 2.5 kV oscillatory, 4 kV fast transient
		IEC 60255-22-1:2007, 2.5 kV peak common and 2.5 kV peak differential mode 1.0 kV peak common mode on communications ports
5	Surge Immunity:	IEC 62052-11:2003, 4 kV for Current, Voltage, and Power Supply Mains 1 kV for Auxiliary Circuits
IH _n , and PH _n are <i>n</i> th	Power Frequency Magnetic Field Immunity:	IEC 61000-4-8:2009, 1000 A/m for 3 seconds, 100 A/m for 1 minute excludes optional modem
	Pulse Magnetic Field Immunity:	IEC 61000-4-9:1993, 1000 A/m
e	Electrostatic Discharge Immunity:	IEC 61000-4-2:2008 Elec. disturb., Section 2: ESD, Severity Level: 4
e		IEC 60255-22-2:2008 Elec. disturb. Section 2: ESD, Severity Level:4; both polarities at Levels 1, 2, 3, and 4
ST (10-min. interval)		

Radiated Radio	IEC 61000-4-3:2010,	Safety	
Frequency Immunity:	Severity Level: X (15 V/m) IEC 60255-22-3:2007 Elec. relays, Section 3: Radiated electromagnetic field disturb., Severity Level: 3 (10 V/m) ANSI C12.20 (1998), Severity Level: 15 V/m	Dielectric Strength/Impulse:	IEC 60255-5:2000 Elec. relays, Part 5: Insulation, Section 6: 2.5 kVac on AC current inputs, contact inputs, and contact outputs, 3.1 kVdc on power supply, and 2.2 kVdc on EIA-485 port for 60 sec. dielectric,
Conducted Radio Frequency Immunity:	IEC 61000-4-6:2008, Severity Level: 3		Severity: 2500 Vac on analog inputs, contact inputs, and contact outputs;
Fast Transient Burst Immunity:	IEC 61000-4-4:2011, Severity Level: 4		3100 Vdc on power supply IEC 60255-5:2000 0.5 Joule, 5 kV on power supply,
Environmental Tests			contact inputs, contact outputs, ac current inputs,
Cold:	IEC 60068-2-1, 2007 Envir., Test Ad, Severity: 16 hours at –40°C		and voltage inputs Section 8: Impulse Voltage, 2200 Vdc on EIA-485, Severity Level: 0.5 Joule, 5 kV
Dry Heat:	IEC 60068-2-2:2007, Envir., Part 2: Test Bd, Severity: 16 hours at +85°C	High-Voltage Line Surges:	IEEE C62.41-1991 100 kHz Ring Wave for Location Category B3, Peak Voltage of 6 kV and Short-Circuit Peak Current of
Damp Heat, Cyclic:	IEC 60068-2-30:2005 Basic envir., Part 2: Test Db, Severity: 25° to 55°C, 6 cycles, 95% humidity		3 kA 1.2/50 µs Combination Wave for Location Category B3, Peak Voltage of 6 kV and Short-Circuit Peak Current of 3 kA
Enclosure Protection:	IEC 60529:2001, IP65, enclosed in panel with available gasket (P/N: 915900097); IP41 without gasket; IP20 for rear panel	Impulse Voltage Test:	IEC 687:1992–06 6 kV on power supply, ac current inputs, and voltage inputs
Vibration, Shock, and Bump:	IEC 60255-21-1:1988 Elec. relays, Part 21: Vibration, shock, bump, and seismic, Section 1, Severity: Response: Class 2 Endurance: Class 1	^a Only available on the SE	I-734B model.
	IEC 60255-21-2:1988 Elec. relays, Part 21: Vibration, shock, bump, and seismic, Section 2, Severity: Response: Class 2 Endurance: Class 1		
	IEC 60255-21-3:1993 Elec. relays, Part 21: Vibration, shock, bump, and seismic, Section 3, Severity: Class 2		

© 2007-2015 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative.

SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 www.selinc.com · info@selinc.com

Product Data Sheet 00813-0100-4485, Rev EC June 2013

Rosemount DP Flow

Rosemount DP Flowmeters and Primary Elements

- MultiVariable capabilities allow for real time fully compensated mass and energy flow
- Fully-Integrated Wireless Flowmeters allow for easy installation
- Minimize permanent pressure loss and save energy with Annubar[®] Technology
- Reduce straight pipe requirements to two diameters upstream and downstream from flow disturbances with Conditioning Orifice Plate Technology
- Improve accuracy and repeatability in small line sizes with Integral Orifice Plate Technology

Contents

DP Flow Selection Guidepage 2
Ordering Information, Specifications, and Certifications
Rosemount 3051SF DP Flowmeters
Rosemount 3051CF Flowmeter Series
Rosemount 2051CF Flowmeter Series
Rosemount 485 Annubar Primary Element
Rosemount 585 Annubar Primary Element
Rosemount 405 Compact Primary Element
Rosemount 1595 Conditioning Orifice Plate
Rosemount 1195 Integral Orifice Primary Element
Rosemount 1495 Orifice Plate
Rosemount 1496 Orifice Flange Union
Dimensional Drawings
Installation and Flowmeter Orientation

DP Flowmeter Selection Guide

Rosemount integrated DP Flowmeters arrive fully assembled, configured, and leak tested for out-of-the-box installation.

Rosemount 3051SF Flowmeters enable best-in-class flow measurement utilizing advanced functionality

- Up to 0.80% mass flow rate accuracy
- Multivariable capabilities allow for real time fully compensated mass and energy flow
- · Advanced diagnostics predict and prevent abnormal process conditions
- Installation ready wireless flow solution
- Ultra for Flow measures %-of-reading performance over 14:1 flow turndown
- 10-year stability, 12-year warranty

Rosemount 3051CF Flowmeters combine the proven 3051C pressure transmitter and the latest primary element technology

- Up to 1.65% volumetric flow accuracy at 8:1 turndown
- Available with HART[®], FOUNDATION[™] fieldbus, and Profibus Protocols
 - 5-year stability

Rosemount 2051CF Flowmeters combine the 2051C pressure transmitter and the latest primary element technology

- Up to 2.00% volumetric flow accuracy at 5:1 turndown
- Available with HART, and FOUNDATION fieldbus Protocols
- 2-year stability

Rosemount Annubar Primary Element Technology

- · Energy savings gained through minimal permanent pressure loss
- Innovative T-shape design that increases accuracy to up to $\pm 0.75\%$ of flow rate
- Variety of sensor materials for optimal compatibility with the process fluid
- Handles applications where conditions exceed the structural limitations of other primary elements
- · Symmetrical sensor design allows bi-directional flow measurement
- · Reduce installation costs with the 405A Compact Annubar

- Reduce straight pipe requirements to two diameters upstream and downstream from flow disturbances
- Discharge coefficient uncertainty of ±0.5%
- Integral thermowell enables fully compensated mass flow with a single pipe penetration
- Reduce installation costs compared to traditional orifice plates with the compact design
- Conditioning orifice plate is based on AGA, ASME and ISO industry standards
- · Available in various plate styles providing installation flexibility

Rosemount Integral Orifice Plate Technology

- Improves accuracy and repeatability in 1/2-in., 1-in., and 1 1/2-in. line sizes
- Self-centering plate design eliminates installation errors that are magnified in small line sizes
- Precision honed pipe sections allow accuracy of up to ±0.75% of flow rate
- Installation flexibility with numerous process connections
- · Integral thermowell enables fully compensated mass flow

Rosemount 3051SF DP Flowmeters

Rosemount 3051SF Flowmeters integrate industry leading transmitters with industry leading primary elements. Capabilities include:

- Flowmeters are factory configured to meet your application needs (Configuration Data Sheet required)
- MultiVariable capabilities allow scalable flow compensation (Measurement Types 1-7)
- HART 4-20, Wireless, and FOUNDATION fieldbus protocols
- Ultra for Flow for improved flow performance across wider flow ranges
- Integral temperature measurement (Option Code T)
- Advanced Diagnostics (Option Code DA2)
- Direct or remote mount configurations available

Additional Information Specifications: page 26 Dimensional Drawings: page 140.

Rosemount 3051SFA Annubar Flowmeter

- Annubar flowmeters reduce permanent pressure loss by creating less blockage in the pipe
- · Ideal for large line size installations when cost, size and weight of the flowmeter are concerns

Table 1. Rosemount 3051SFA Annubar Flowmeter Ordering Information

 \star The Standard offering represents the most common options. The starred options (\star) should be selected for best delivery.

The Expanded offering is subject to additional delivery lead time.

		Measurement Type		• = Available	
Model	Model Product Description			Unavailable	
3051SFA	Annubar Flowmeter	•	•		
Measuremen	t Type				
Standard				Standard	
1	Fully Compensated Mass & Energy Flow Calculations – Differential & Static Pressures w/ Temperature	_	•	*	
2	Compensated Flow Calculations – Differential & Static Pressures	—	•	*	
3	Compensated Flow Calculations – Differential Pressure & Temperature	—	•	*	
4	Compensated Flow Calculations – Differential Pressure	—	•	*	
D	Differential Pressure	•	—	*	
Expanded				Expanded	
5	Process Variables Only (No Flow Calculations) – Differential & Static Pressures with Temperature	—	•		
6	Process Variables Only (No Flow Calculations) – Differential & Static Pressures	—	•		
7	Process Variables Only (No Flow Calculations)	—	•		
Fluid Type					
Standard				Standard	
L	Liquid	•	•	*	
G	Gas	•	•	*	
S	Steam	•	•	*	

3051SF Series Specifications

3051SF PERFORMANCE SPECIFICATIONS

Performance assumptions include: measured pipe I.D, transmitter is trimmed for optimum flow accuracy, and performance is dependent on application parameters. Table 4. MultiVariable Flow Performance - Flow Reference Accuracy (Measurement Type 1)⁽¹⁾⁽²⁾

3051SFA Annubar Flowmeter			
		Classic MV (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Ranges 2-3	Ranges 2-3 ±1.15% of Flow Rate		±0.80% of Flow Rate
3051SFC_A C	ompact Annubar I	Flowmeter - Annubar Option A	
		Classic MV (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Ranges 2-3	Uncalibrated	±1.60% of Flow Rate	±1.55% of Flow Rate
	Calibrated	±1.00% of Flow Rate	±0.80% of Flow Rate
3051SFC_C C	ompact Orifice Flo	owmeter - Conditioning Option C	
		Classic MV (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Bangaa 2.2	β =0.4	±1.10% of Flow Rate	±0.75% of Flow Rate
Ranges 2-3	β =0.65	±1.45% of Flow Rate	±1.15% of Flow Rate
3051SFC_P Compact Orifice Flowmeter - Orifice Option P ⁽³⁾			
		Classic MV (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Ranges 2-3	β =0.4	±1.45% of Flow Rate	±1.30% of Flow Rate
Ranges 2-3	β =0.65	±1.45% of Flow Rate	±1.30% of Flow Rate
3051SFP Integ	gral Orifice Flowm	eter	
		Classic MV (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
	β <0.1	±2.65% of Flow Rate	±2.60% of Flow Rate
Dangaa 2.2	0.1<β<0.2	±1.60% of Flow Rate	±1.40% of Flow Rate
Ranges 2-3	0.2<β<0.6	±1.25% of Flow Rate	±0.95% of Flow Rate
	0.6<β<0.8	±1.80% of Flow Rate	±1.60% of Flow Rate

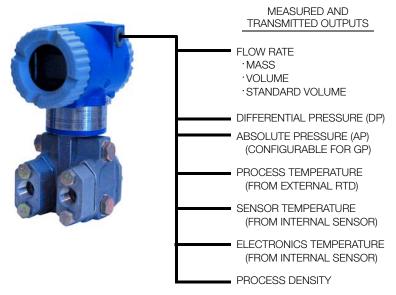
(1) Measurement Types 2 - 4 assume that the unmeasured variables are constant. Additional uncertainty will depend on the variation in the unmeasured variables. DP Calibrated at up to 1/10th full scale to optimize accuracy over range of use.

(2) Range 1 flowmeters experience an additional uncertainty up to 0.9%. Consult your Emerson Process Management Representative for exact specifications.

(3) For line size less than 2 in. (50 mm) or greater than 8 in. (200 mm), add an additional 0.5% uncertainty.

Table 5. Flow Performance - Flow Reference Accuracy (Measurement Type D)⁽¹⁾⁽²⁾⁽³⁾

3051SFA Ann	ubar Flowmeter			
		Classic (8:1 flow turndown)	Ultra (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Ranges 2-3		±1.25% of Flow Rate	±0.95% of Flow Rate	±0.80% of Flow Rate
3051SFC_A C	ompact Annuba	r Flowmeter-Annubar Option A	·	÷
		Classic MV (8:1 flow turndown)	Ultra (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Ranges 2-3	Uncalibrated	±1.70% of Flow Rate	±1.65% of Flow Rate	±1.55% of Flow Rate
	Calibrated	±1.25% of Flow Rate	±0.95% of Flow Rate	±0.80% of Flow Rate
3051SFC_C C	ompact Orifice	Flowmeter – Conditioning Option	C	·
		Classic (8:1 flow turndown)	Ultra (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Dangaa 2.2	β =0.4	±1.10% of Flow Rate	±0.9% of Flow Rate	±0.75% of Flow Rate
Ranges 2-3	β =0.65	±1.40% of Flow Rate	±1.25% of Flow Rate	±1.15% of Flow Rate
3051SFC_P C	ompact Orifice I	Flowmeter – Orifice Option P ⁽⁴⁾	·	÷
		Classic (8:1 flow turndown)	Ultra (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
Denses 0.0	β =0.4	±1.80% of Flow Rate	±1.35% of Flow Rate	±1.30% of Flow Rate
Ranges 2-3	β =0.65	±1.80% of Flow Rate	±1.35% of Flow Rate	±1.30% of Flow Rate
3051SFP Integ	gral Orifice Flow	meter	1	
		Classic (8:1 flow turndown)	Ultra (8:1 flow turndown)	Ultra for Flow (14:1 flow turndown)
	β <0.1	±2.70% of Flow Rate	±2.65% of Flow Rate	±2.60% of Flow Rate
Dangaa 2.2	0.1<β<0.2	±1.80% of Flow Rate	±1.45% of Flow Rate	±1.40% of Flow Rate
Ranges 2-3	0.2<β<0.6	±1.50% of Flow Rate	± 1.10% of Flow Rate	±0.95% of Flow Rate
	0.6<β<0.8	±2.00% of Flow Rate	±1.70% of Flow Rate	±1.60% of Flow Rate


FIELD DEVICES - PRESSURE

Product Specifications

PSS 2A-1C15 A

Model IMV30 I/A Series® Multivariable Transmitters for P, DP, and T Measurements with HART or FoxCom[™] Communication Protocol

The Foxboro[®] brand Model IMV30 Multivariable Transmitter is available from Invensys Process Systems (IPS). It is an intelligent two-wire transmitter that provides precise and reliable measurement of pressure, differential pressure, sensor and electronics temperatures, and process temperature (from an external RTD). It transmits a 4 to 20 mA or digital output signal, as applicable, using HART or FoxCom Communication for remote configuration, calibration, and monitoring. When used with a primary flow element, it also calculates process density and flow rate, and provides transmission of all the measured and calculated values.

FEATURES

- One transmitter for many applications:
 - Individual measurements on a 2-wire loop.
 - Multiple measurements digitally.
 - Assigns 4 to 20 mA to any measurement.
- Complete configuration using a Model PCMV PC-based configurator; limited configuration with optional LCD indicator, or HART communicator.
- Calculates mass, volume, or standard volume flow rate based on multiple measurements, using a primary flow element.
- Standard 5-year warranty.

- Convenient module change allows easy migration between communication protocols.
- Designed for hazardous area installations; versions available to meet Agency flameproof and zone requirements.
- CE marked; complies with EMC, ATEX, and PED European Directives; and NAMUR NE 21 interference immunity requirement, and NAMUR 105 overrange and underrange annunciations.

Foxboro

 One transmitter replaces three separate transmitters, saving initial purchase costs.

BENEFITS

- Reduced process penetrations save money and reduce chances of fugitive emissions.
- Fewer transmitters, less wiring, and fewer shutoff valves reduce installation costs.
- Greater reliability due to fewer devices and less wiring means less chance of losses from downtime or process upsets.
- Flow rate values from the transmitter eliminate allocation of system resources for flow rate calculations, reducing system costs.
- High functionality and high performance provide exceptional value.
- Dual Seal certified by CSA to meet ANSI/ISA 12.27.01-2003 requirements.
- Numerous options and accessories offered to expand the capabilities of these transmitters.

I/A Series PRESSURE TRANSMITTER FAMILY

These Transmitters are part of a complete family of gauge, absolute, d/p Cell®, multirange, multivariable, and premium performance transmitters, as well as transmitters with remote or direct mount pressure seals. They all use field-proven silicon strain gauge sensors and common topworks. See below for electronic versions offered with the IMV30.

DIGITAL FoxCom OR 4 to 20 mA dc (VERSION -D ELECTRONICS)

FoxCom Digital Output

Provides Measurement Integration with I/A Series systems, transmission of multiple measurements and diagnostics. Also provides digital communications with a Model PCMV PC-based Configurator, or an optional LCD Indicator with on-board pushbuttons.

FoxCom 4 to 20 mA Output

Allows direct analog connection to common receivers while still providing full Intelligent Transmitter Digital Communications with a Model PCMV PCbased Configurator, applicable I/A Series system FBMs, or optional LCD Indicator.

DIGITAL HART AND 4 to 20 mA dc (VERSION -T ELECTRONICS)

4 to 20 mA with HART communications. Allows direct analog connection to common receivers while still providing full digital communications using a HART Communicator, PC-based Configurator, or optional LCD Indicator.

For complete configuration capability, Foxboro Model PCMV PC-based configurator is required. A HART Communicator PC-based configurator, or optional LCD indicator can be used for routine transmitter functions such as rezeroing or changing damping settings. See Figure 17 for more information on Option -L1, LCD Indicator.

OPTIONAL CUSTOM FACTORY CONFIGURATION (OPTION -C2)

As stated previously, changes can be made to the IMV30 using a HART Communicator, PC-Based Configurator, or the optional local display. It must be understood that these configuration methods cannot configure the IMV30 for a specific application, but can only modify some parameter values after the initial configuration. Therefore IPS recommends that IMV30 transmitters be factory configured at time of shipment if the application information is known. In order to supply the necessary information to the factory, an Option -C2 Configuration Wizard must be run and the results must be available to BuyAutomation. If the Factory Configuration Option (Option -C2) is not selected in the Model Code, the user must then have Model PCMV configuration software to fully configure the IMV30 transmitter for flow rate applications. The Device Descriptions and Device Type Manager files available from IPS can modify some configuration parameters, but only the Model PCMV will calculate the necessary coefficients related to the process liquid and pass them to the transmitter.

MULTIPLE MEASUREMENTS/CALCULATIONS

- Differential Pressure (DP)
- Pressure (P)
- Process Temperature (from external RTD)
- Flow Rate (Mass, Volume, or Standard Volume)
- Density
- Sensor Temperature
- Electronics Temperature

EXCEPTIONALLY HIGH PERFORMANCE

- Accuracy to ±0.05% of Span
- Long term stability with drift less than ±0.05%
 URL per Year over a 5-year Period
- Minimized static pressure effect on DP by using pressure to compensate the DP measurement
- Excellent Ambient Temperature Effect
 Compensation due to Characterization and
 Microprocessor-Based Compensation
- Total Probable Error (TPE) significantly better than typical competitive transmitters

FLOW RATE MEASUREMENT

- Can be used with primary flow devices such as orifice plates (see Figure 1), flow nozzles, Venturi tubes, and averaging pitot elements
- Flow equations for liquids, gases, and vapors (also natural gas and steam) reside in the IMV30
- With a separate RTD for Process Temperature Measurement, the IMV30 can calculate Mass Flow Rate, fully compensated for changes in absolute pressure and temperature
- Selection of Volume and Standard Volume Flow Rate, in addition to Mass Flow Rate
- Supports connection of a 2-, 3-, or 4-wire RTD, user-entered temperature, or calculation from saturation pressure (steam)
- Eliminates the need for a separate computer to make the flow rate calculations
- Flow rate transmission can be either in selectable EGU, such as kg/min (for the digital signal), or in

Current (for the 4 to 20 mA analog signal), representing a specified flow rate range

- Continuous dynamic compensation for all variables, including:
 - Changes in fluid density
 - Dimensional changes in primary device and adjacent piping with temperature
 - Changes in discharge coefficient based on Reynolds Number (corrected for velocity, density, and viscosity)

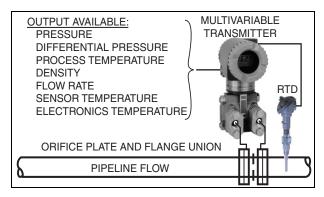


Figure 1. Flow Rate Measurement with Orifice Plate

MODEL PCMV MULTIVARIABLE TRANSMITTER CONFIGURATOR (REFER TO PSS 2A-1Z3 F)

- Windows-based software package to configure IMV30 Transmitter for flow rate applications
- Determines a set of application-specific coefficients to be downloaded to transmitter for use in the transmitter's flow rate equations
- Provides configuration for:
 - Choice of primary flow device (i.e., orifice, nozzle, Venturi, averaging pitot)
 - Choice of pressure tap location (i.e., flange, corner, or D and D/2)
 - Process fluid, from a database of densitytemperature relationships for over 275 fluids, or from user-entered density and temperature data
 - Operating pressure and temperature ranges
 - Industry flow rate standards, such as AGA, API, ISO, and ASME

• F-1210 DUAL TURBINE • INSERTION FLOW METER ANALOG OUTPUT

Made in the USA

DESCRIPTION

ONICON insertion turbine flow meters are suitable for measuring electrically conductive water-based liquids. The F-1210 model provides non-isolated 4-20 mA and 0-10 V analog output signals that are linear with the flow rate.

APPLICATIONS

- Closed loop chilled water, hot water, condenser water & water/glycol/brine solutions for HVAC
- Process water & water mixtures
- Domestic water (NSF/ANSI 61/372 version*)

GENERAL SPECIFICATIONS

ACCURACY

± 0.5% of reading at calibrated velocity
± 1% of reading from 3 to 30 ft/s (10:1 range)
± 2% of reading from 0.4 to 20 ft/s (50:1 range)
SENSING METHOD
Electronic impedance sensing
(non-magnetic and non-photoelectric)
PIPE SIZE RANGE
2½" through 72" nominal diameter
SUPPLY VOLTAGE
24 ± 4 V AC/DC at 80 mA
LIQUID TEMPERATURE RANGE
Standard: 180° F continuous, 200° F peak
High Temp: 280° F continuous, 300° F peak
Meters operating above 250° F require 316 SS

construction option AMBIENT TEMPERATURE RANGE

-5° to 160° F (-20° to 70° C) OPERATING PRESSURE

400 PSI maximum

PRESSURE DROP

Less than 1 PSI at 20 ft/s in 2¹/₂" pipe, decreasing in larger pipes and lower velocities

OUTPUT SIGNALS PROVIDED

Analog Outputs (Non-Isolated) Jumper selectable: 4-20 mA / 0-10V / 0-5V Frequency Output 0 – 15 V peak pulse

(continued on back)

CALIBRATION

Every ONICON flow meter is wet calibrated in our flow laboratory against primary volumetric standards that are directly traceable to N.I.S.T. A certificate of calibration accompanies every meter.

FEATURES

Unmatched Price vs. Performance -

Custom calibrated, highly accurate instrumentation at very competitive prices.

Excellent Long-term Reliability -

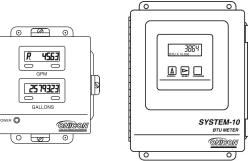
Patented electronic sensing is resistant to scale and particulate matter. Low mass turbines with engineered jewel bearing systems provide a mechanical system that virtually does not wear.

Industry Leading Two-year "No-fault" Warranty -

Reduces start-up costs with extended coverage to include accidental installation damage (miswiring, etc.) Certain exclusions apply. See our complete warranty statement for details.

Simplified Hot Tap Insertion Design -

Standard on every insertion flow meter. Allows for insertion and removal by hand without system shutdown.


OPERATING RANGE FOR COMMON PIPE SIZES 0.17 TO 20 ft/s ±2% accuracy begins at 0.4 ft/s					
Pipe Size (Inches)	Flow Rate (GPM)				
21/2 3 4 6 8 10 12 14 16 18 20 24 30 36	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

F-1210 SPECIFICATIONS (cont.)

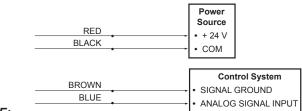
MATERIAL

Wetted metal	components:
Standard:	Electroless nickel plated brass
Optional:	316 stainless steel
Optional:	NSF/ANSI 61/372 version*
ELECTRONICS	S ENCLOSURE
Standard:	Weathertight aluminum
	enclosure
Optional:	Submersible enclosure
ELECTRICAL (CONNECTIONS
4-wire recom	mended for analog output
Standard:	10' of cable with ½" NPT
	conduit connection
Optional:	Indoor DIN connector with 10'

ALSO AVAILABLE

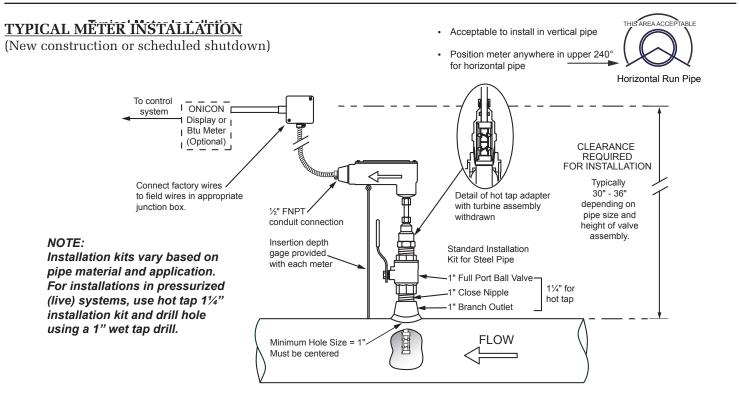
of plenum rated cable

Display Modules


Btu Measurement Systems

WIRE COLOR	DESCRIPTION	NOTES			
RED	(+) 24 V AC/DC supply voltage, 50 mA	Connect to power supply positive			
BLACK	(-) Common ground (Common with pipe ground)	Connect to power supply negative & analog input ground			
GREEN	(+) Frequency output signal:0-15 V peak pulse	Required when meter is connected to local display or Btu meter			
BLUE	(+) Analog signal	Jumper Selectable:			
BROWN	(-) Analog signal	4-20 mA / 0-10V / 0-5V			
	DIAGNOSTIC SIGNALS				
ORANGE	Bottom turbine frequency	These signals are for diagnostic purposes - connect to local display			
WHITE	Top turbine frequency	or Btu meter			

F-1210 WIRING DIAGRAM


Flow meter into control system (no display or Btu meter)

NOTE:

1. Black wire is common with the pipe ground (typically earth ground). 2. Frequency output required for ONICON display module or Btu meter, refer to wiring diagram for peripheral device.

SSIF TURBINE INSERTION FLOW METER NSF/ANSI 61 <MH60590> ALSO CLASSIFIED US IN ACCORDANCE WITH WATER QUALITY NSF/ANSI 372

11451 Belcher Road South, Largo, FL 33773 • USA • Tel +1 (727) 447-6140 • Fax +1 (727) 442-5699 www.onicon.com • sales@onicon.com

LIQUID • GAS • STEAM

Features/Benefits

INSTALL IT & FORGET IT

The ForceMeter[™] offers the same rugged design for which the Niagara Meters brand is known. The ForceMeter is ideal for applications including water, compressed air, gases, super-heated steam and saturated steam.

FEATURES & BENEFITS

Quick Response Time

• Displays the flow rate from zero to full range of flow in less than a second or a dampening value can be used to slow the response time

Rugged Design

- No frictional moving parts to wear out
- Withstands thermal shock
- All welded flow sensor construction
- Hermetically sealed
- Extreme temperature ranges: -320° to 500° F
- Not damaged by over range

Easy to Maintain

- Calibration verification without a flow stand
- No maintenance needed
- Ability to change flow ranges by changing targets

Flexible

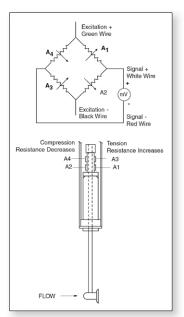
- Warning and fault history stored
- Option for bidirectional
- 2 line, 4 button display
- HART[™] compliant communication
- 4-20mA output
- 2-wire, loop powered or 3-wire version available

Approvals

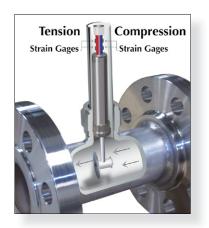
• CE, FM

Approved for Hazardous Locations

ForceMeter Display


FORCEmeter Principle of Operation

HOW A FORCEMETER WORKS:


The ForceMeter is a liquid, steam or gas flow meter. The force of the fluid is sensed on the target in the flow stream using a hermetically sealed strain gage bridge circuit. The transmitter converts the force to a 4-20 mA output that is proportional to the flow rate.

How the Bridge Circuit Works

- Force from the fluid flow is transferred from the target to the sensing tube
- Four interconnected, 5000 Ohm strain gages are attached to the sensing tube in a bridge circuit
- At zero flow, the bridge circuit is balanced producing zero output
- Force from the flow produces strain on the sensing tube
- The bridge circuit senses the force (strain) producing an output

Bridge Circuit Diagram

Basic Principle of Operation

Force = $C_d A \rho \frac{V^2}{2g}$

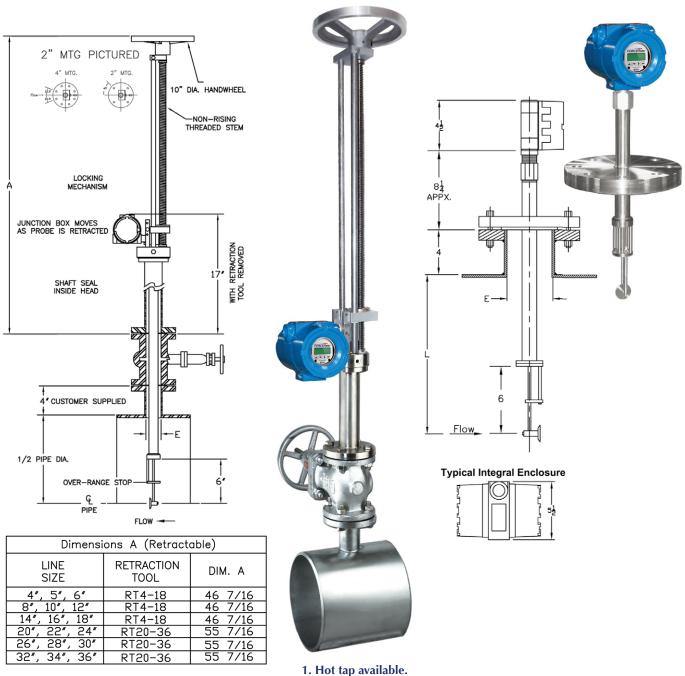
 C_d = Drag Coefficient A = Target Area ρ = Fluid Density

 $\frac{V^2}{2g}$ = Velocity Head

TRANSMITTER OPTIONS

2-Wire: A 2-wire loop powered meter with a 4-20mA output and HART communication. It has a turndown ratio of 15:1, and is used where 2-wire loop powered is required.

3-Wire: The 3-wire has a power, signal (4-20mA and HART communication), and ground connection. With more power available, the meter produces a higher signal-to-noise ratio, minimizing electrical interference. This increases the turndown ratio to 20:1, allowing lower flow rates to be measured.



ONE METER, MANY SOLUTIONS

The ForceMeter insertion meter is used in applications with 4" line sizes and larger. A fixed or retractable insertion installation is very useful and economical. The retractable insertion allows for a hot tap installation for processes where the line cannot be interrupted.

Fixed Insertion

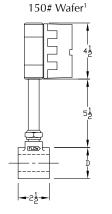
Retractable Insertion

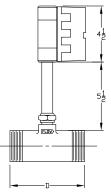
2. Shown with customer supplied valves and pipe.

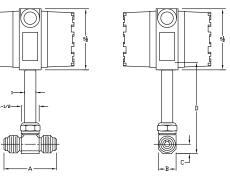
IDEAL FOR LIQUIDS, GASES OR STEAM

The ForceMeter inline flow meter is used in applications with line sizes of 0.5" to 6.0". The meter is supplied with the housing in all typical mounting configurations, such as wafer, MNPT, AN 37° Flare Tube, and flanged.

Standard Mounting Options:


Wafer, Flanged, MNPT, AN 37° Flare Tube

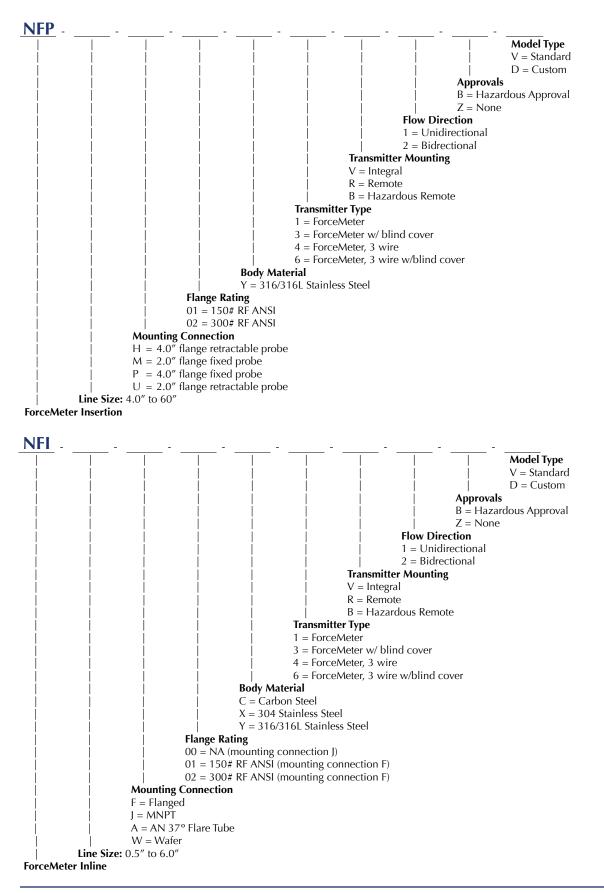




150# RF ANSI Flange¹

SCH 40 MNPT¹

AN 37° Flare Tube²


		D	DIMENSIC	N	
SIZE	Wafer	150	# RF	MN	IPT
SIZE		Dim	Product	Dim.	Product
		Dim. Wt. (lbs.)		Dim.	Wt. (Ibs.)
1/2"	1-3/4"	5"	8	4"	6
3/4"	2-1/8"	5"	9	4"	6
1"	2 -1/2"	5"	9	5"	6
1-1/4"	2-7/8"	6"	11	6"	7
1-1/2"	3-1/4"	6"	12	6"	7
2"	4"	8"	18	8"	7
3"	5-1/4"	9"	28	9"	9
4"	6-3/4"	10-1/2"	40	-	-
6"	8-5/8"	12-1/2"	60	-	-

	DIMENSIONS				
SIZE	Α	в	с	D	Product
	~	В	C		Wt. (Ibs.)
1/2"	3.600"	1-3/8"	11/16"	7-5/8"	2.250
3/4"	3.600"	1-3/8"	11/16"	7-5/8"	2.250
1"	3.666"	1-3/8"	11/16"	7-5/8"	2.250
1-1/4"	3.666"	1-11/16"	7/8"	7-5/8"	2.500
1-1/2"	3.760"	1-15/16"	1"	8-1/8"	3.000
2"	4.260"	2-9/16"	1-5/16"	8-5/8"	4.500

1. Drawings shown as remote displays.

2. Drawing shown as integral display.

ADAPTABLE AND FLEXIBLE TO YOUR ENVIRONMENT

Approvals

- Designed to meet military standards for shock and vibration
- FM hazardous locations
- CE

Variety of Materials

- Carbon steel
- 304 Stainless steel
- 316/316L Stainless steel
- Alloy C276
- Inconel
- Brass target only oxygen applications

All-Welded Construction Available

Remote Transmitter

- High temperature applications
- Location, display not visibile

Operating Temperatures

- -65° to 425° F (-54° to 218° C) standard
- -65° to 500° F (-54° to 260° C) extended temp
- -320° to 250° F (-195° to 121° C) cryogenic

Remote Transmitter Enclosure

FORCEmeter Technical Data

	L'a 'da (Da calda a cala a cala da la cala 2000), assessa a data an
Fluid Types	Liquids (Reynolds numbers greater than 2000), gases and steam
Bridge Resistance	5000 ohms ± 30 ohms
Operating Pressure	Up to 5000 PSI maximum working pressure Mounting Type / Connections: according to the appropriate ANSI specifications
Operating Temperature	-65° to 425° F (-54° to 218° C) standard -65° to 500° F (-54° to 260° C) extended temp -320° to 250° F (-195° to 121° C) cryogenic
Transmitter Ambient Temperature	-4° to 158° F (-20° to 70° C)
PERFORMANCE	
Accuracy	± 1.0% of rate
Repeatability	± 0.15% of rate
Turn Down	15:1 for 2 wire version; 20:1 for 3 wire version
Response Time	0.3 seconds
Damping	User adjustable 0 to 99 samples
Flow Direction	Unidirectional or bidirectional
Communications	HART® communication signal (superimposed on a 4-20 mA DC signal)
PHYSICAL	
Housing / Flanges	316L stainless steel (standard), others available
Rating	NEMA 4X
Mounting Positions	Horizontal, vertical or on an angle
Typical Straight Pipe Requirements	10 x pipe diameter of straight uninterrupted pipe upstream 5 x pipe diameter of straight uninterrupted pipe downstream
Process Connections	MNPT (0.5" to 3.0") ANSI Raised Face Flange (Class 150# standard, 0.5" to 6.0") Wafer (0.5" to 6.0") AN 37 Degree Flare Tube (0.5" to 2.0") Fixed Insertion Probes, 2" or 4" ANSI Raised Face Flange (Class 150# standard) Retractable Insertion Probes, 2" or 4" ANSI Raised Face Flange (Class 150# standard)
Transmitter Housing	Integral: Polyester powder coated aluminum, dual cavity Remote: Compression-molded fiberglass Remote Hazardous: Polyester powder coated aluminum, dual cavity
Power	18 to 36 VDC
Line Sizes	Inline 0.5" to 6.0", Insertion 4.0" to 60"
Electrical Connections	0.75" NPT
Remote Enclosure Rating	NEMA 4X
Remote Enclosure Dimensions	7 x 8.5 x 4.5 inches (17.8 x 21.5 x 11.4 cm) (with tabs)
Maximum Remote Distance	200 ft (61 m)
ACCESSORIES	
	Rate / Total Indicator, Batch Controller, Mass Flow Computer (gases or steam)

Approvals

- CE Electromagnetic Compatibility Directive (EMC) ٠
- FΜ XP Class I, Div 1, Groups B, C, D DIP Class II & III, Div 1, Groups E, F, G

150 Venture Boulevard · Spartanburg, SC 29306 800-778-9251 864-574-3327 sales@niagarameters.com www.niagarameters.com

2014 All rights reserved. All data subject to change without notice.

FM201106 Rev. E

Submittal Transmittal

Detailed, Grouped by Each Number

	DLLEGE COGEN	Pro	oject # 1417				Bette & Cring, LLC
807 Union	n Street	Tel	: 518 213-1047	Fax	: 518 2	213-1050	
Schenecta	ady, NY 12305						
Date:	11/6/2015						Reference Number: 0246
Transmit	ted To: Aaron Bolh	DUS	Transmitt	ed By	:	Patrick Gebbie	
	CHA Power	Team		-		Bette & Cring, LL	.C
	80 King Stre	eet				22 Century Hill D	Prive
	Suite 404					Suite 201	
	St. Catherin	es, ON L2R 7G1				Latham, NY 12 ²	110
	Tel: (905) 98	34-8383				Tel: 518-213-101	0
	Fax: (905) 9	984-8394				Fax: 518-213-10	50
Qty	Submittal Package No	Description				Due Date	Package Action
40 pgs w/covers	0001 - 15120 - 02	Vortex Flowmeter	(FIT-101, -102 & ·	-140)		11/13/2015	For Review
Transmit	ted For	De	livered Via				Tracking Number
Approval		err	ail				FPI#1r2 10/26
Items	Qty	Description	Notes				Item Action
01	38 pgs	Vortex Flowmeter (FIT-10 -102 & -140)	1,				For Review
Cc: Co	ompany Name	Contact Name	e Cop	ies	Notes		
	IA Power Team	Aaron Bolhou					
Remarks							

Signature

Submittal Packages

Detailed, Grouped by Each Number

UNION COLLEGE C 807 Union Street Schenectady, NY 123				Project # 14 Tel: 518 213		3 213-1050				Bette & Cring, LLC
0001-15120-02	Vor	tex Flowme	ter (FIT-101, -102 & -140)							Closed No
Author Company		Co	ntact	Author Pa	ickage #	Trade			Importance	
FPI Mechanical Inc.		Tod	d LaFreniere	FPI #1r2 - 1	10/26	Piping S	Specialities	3	Normal	
Items										
Item No	Register No	Rev	Description	Туре		Action		Logged By	Returned	Closed
01	00487	2	Vortex Flowmeter (FIT-101, -102 -140)	2 & Produ	ct Data	For Review		Gebbie	No	No
Reviewers										
From Company		To Comp	any	Sent Date	Due Date	Rec'd Date	+/-	Action	Sent For	
FPI Mechanical Inc.		Bette & Cr	ing, LLC			10/26/2015				
Bette & Cring, LLC		CHA Powe	er Team	11/6/2015	11/13/2015		-7	For Review	Approval	
CHA Power Team		Bette & Cr	ing, LLC							
Bette & Cring, LLC		FPI Mecha	anical Inc.							
Package Notes:					Review	ver's General Com	ments:			

Second re-submittal of FIT-101, FIT-102 & FIT-140 per previous comments.

PROJECT NAME: <u>Union College – Combined Heat & Power Project</u>

SUBMITTAL COVER

Owner:Union CollegeEngineer:CHA	Contractor: FPI	I Mechanical, Inc.
Contractor:Bette & CringAttn:Dick WhiteProject No.		Green Mountain Drive hoes, NY 12047
FPI Project No. 15519	Trade Me	echanical
SUBMITTAL No. 01R2 DATE OF SUBMIC (CHECK ONE) DATE OF SUBMIC	IITTAL: 10-26-2015	
(X) Product Data () Schedule () F	erformance Data	
() Sample () Warranty ()	Operations & Maintenan	ace Data
() Color Selection () Test Report ()		
() Record Document		
DESCRIPTION Product Name: Vortex of OF SUBMITTAL	& Swirl Flowmeters	
Manufacturer: ABB		
Subcontractor: N/A		
Supplier: RL Stor	ie	
REFERENCES Section No(s):	Drawing N	No(s):
Part/Paragraph:	Detail Ref	`:
D It R	ate: 10-26-2015 pc em: ce ef: 3- ECEIVED STAMPS re nc Se av Nc to	ion

10/22/15 FLOW METERS FT-101 60" ± (H) <50> 22 303 -2" LPS 35 psig steam to deaerator No ISSUE W/ STRAGHT LENGTHS 30D UPSTREAM SD DOWNSTREAM < 18' 9D - SWIRL METER M FF 102 2"MPS -90 psig steam to deaerator STEAM LOADER No Issues W/STRAIGHT LENGTHS 9D UPSTREAM /2D DOWNSTREAM FT-140 Condensate return to deaerator? (M) 30

NO ISSUE W/STRAMMIT LENGTHS 40D UPSTRAM/7.5D Dawstrand.

700 0

400

·2"COND

Data Sheet DS/FSS430/450-EN Rev. C

SwirlMaster FSS430, FSS450 Swirl flowmeter

Two-wire swirl flowmeter for measurement of the flow of gas, vapor and liquid

Measurement made easy

Easy assembly

- Only the shortest possible straight pipe lengths are required before and after the flowmeter.
- The measuring ranges have been well adapted to the flow rates common in piping systems today.

Intuitive operation

- "Easy Set-up" function
- Clear text display
- Meter configuration through the front glass with closed cover
- Meter diagnosis with help texts in the display

Approvals for explosion protection

- ATEX
- IECEx
- cFMus
- NEPSI

Optional binary output for use as a limit switch, pulse output or frequency output

Optional analog input for connecting external pressure and temperature transmitters or gas analyzers

Integrated flow measurement computer functionality

- Gas standard volume and mass flow
- Vapor mass flow
- Direct energy calculation for vapor and water
- Natural gas calculation in accordance with AGA / SGERG standards

SwirlMaster FSS430, FSS450 Swirl flowmeter

Fig. 1: FSS430 / FSS450

(1) Integral mount design (2) Remote mount design with transmitter (3) Remote mount design with double sensor

Sensor	\frown					
Model number	FSS430	FSS450				
Design	Integral mount design, remote mount design					
IP degree of protection in accordance with	IP 66 / 67, NEMA 4X	IP 66 / 67, NEMA 4X				
EN 60529						
Measuring accuracy for liquids 1)	$\leq \pm 0.5$ % under reference conditions					
Measuring accuracy for gases and vapors 1)	$\leq \pm 0.5$ % under reference conditions					
Repeatability 1)	DN 15 $\leq \pm 0.3$ %, from DN 20 $\leq \pm 0.2$ %					
Permissible viscosity for fluids	DN 15 32 \leq 5 mPa s, DN 40 50 \leq 10 mPa s, from DN 80 \leq 30 mPa s					
Measuring span (typical)	1:25					
Process connections	Flange DN 15 400 (0.5" 16")	Flange DN 15 400 (0.5" 16")				
Inlet / outlet sections (typical)	Inlet section: 3 x DN, outlet section 1 x DN, see also chapter "Inlet and outlet sections" on page 9.					
Temperature measurement	Resistance thermometer Pt100 class A optional,	Resistance thermometer Pt100 class A standard,				
	installed in Piezo sensor, can be retrofitted	fixed installation in Piezo sensor				
Permissible measuring medium temperature	-55 280 °C (-67 536 °F)	-55 280 °C (-67 536 °F)				
Wetted material						
- Sensor	Stainless steel, optional Hastelloy C / titanium					
 Inlet / outlet pipes 	Stainless steel, optional Hastelloy C					
- Gasket	PTFE, optional Kalrez or graphite					
 Sensor housing 	Stainless steel, optional Hastelloy C					
Sensor design	Piezo sensor with two pairs of sensors for flow me	easurement and vibration compensation				
Approvals for explosion protection	ATEX / IECEx, cFMus, NEPSI					

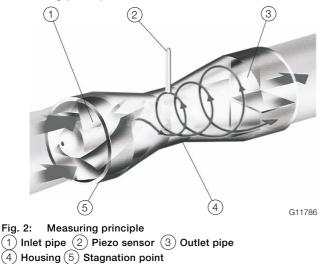
1) Indication of accuracy in % of the measured value (% of measured value)

Transmitter	\frown				
Model number	FSS430	FSS450			
Display	Optional LCD indicator with 4 push buttons for operation through front glass (option)	Standard LCD indicator with 4 push buttons for operation through front glass			
Digital output	Optional, can be configured as pulse output, frequency output, or alarm output via software	Standard, can be configured as pulse output, frequency output, or alarm output via software			
Inputs for external sensors	 HART input (HART burst mode) for external pressure transmitter or temperature transmitter 	 Analog input 4 20 mA for external pressure transmitters - / temperature transmitter or gas analyzer HART input (HART burst mode) for external pressure transmitter - / temperature transmitter or gas analyzer 			
Current output, communication	4 20 mA, HART protocol (HART 7)				
Power supply	12 42 V DC, for devices in explosion-proof design, see chapter "Use in potentially explosive atmospheres" on page 19.				
SensorMemory	Saves sensor and process parameters for easy c	ommissioning after transmitter replacement			
Housing material	 Aluminum (copper content < 0.3 %), component epoxy coating Optional: stainless steel CF3M, corresponds to AISI 316L 				
IP degree of protection in accordance with EN 60529	IP 66 / 67, NEMA 4X				

SwirlMaster FSS430, FSS450 Swirl flowmeter

Model variants

FSS430


Swirl flowmeter for vapor, liquid and gas, with optional graphical display, optional binary output and optional integrated temperature measurement.

FSS450

Swirl flowmeter for vapor, liquid, and gas, with integrated digital output, temperature compensation and flow computer functionality.

The device offers the option of directly connecting external temperature transmitters, pressure transmitters, or gas analyzers.

Measuring principle

The inlet pipe converts the axial flow of the incoming measuring medium into rotational movement. In the center of this rotation a vortex core is formed which is forced into a secondary spiral-shaped rotation by the backflow. The frequency of this secondary rotation is proportional to the flow and, if the internal geometry of the meter measuring device exhibits an optimum design, will be linear over a wide measuring range.

This frequency is measured by a Piezo sensor. The frequency signal from the flowmeter sensor, which is proportional to the flow, undergoes downstream processing in the transmitter.

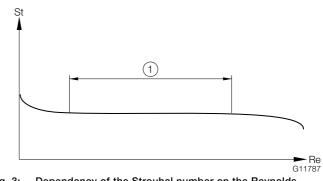


Fig. 3: Dependency of the Strouhal number on the Reynolds number

Due to the dimensions of the inlet pipe and the inner geometry, the Strouhal number (St) is constant over a very wide range of the Reynolds number (Re).

General data

Nominal diameter selection

The nominal diameter is selected on the basis of the maximum operating flow Qv max. If maximum [measuring] spans are to be achieved, this should not be less than half the maximum flow rate for each nominal diameter (QvmaxDN), although reduction to approx. 0.15 QvmaxDN is possible. The linear lower range value is dependent on the Reynolds number (see chapter "Measured error and repeatability" on page 6).

If the flow to be measured is present as a standard flow (standard status: 0 °C (32 °F), 1013 mbar) or mass flow, it must be converted into an operating flow and, from the measuring range tables (see chapter "Measuring range table" on page 7), the most suited device nominal diameter must be selected.

Formula	elements used
ρ	Operating densities (kg/m ³)
ρΝ	Standard density (kg/m ³)
Р	operating pressure (bar)
Т	operating temperature (°C)
Qv	Operating flow (m ³ /h)
Q _n	Standard flow (m ³ /h)
Q _m	mass flowrate (kg/h)
η	dynamic viscosity (Pas)
ν	Kinematic viscosity (m ² /s)

Conversion of standard density to operating density

 $\rho = \rho_{\Pi} \times \frac{1,013 + \rho}{1,013} \times \frac{273}{273 + 7}$

Conversion to operating flow

1. From standard flow (Q_n)

 $Q_V = Q_n \frac{\rho_n}{\rho} = Q_n \frac{1,013}{1,013 + \rho} \times \frac{273 + 7}{273}$

2. From mass flow (Q_m)

 $Q_V = \frac{Q_m}{\rho}$

Conversion of dynamic viscosity --> kinematic viscosity

v	=	η	
		ρ	

Calculation of the Reynolds number
$Re = \frac{a}{(2827 \cdot v \cdot d)}$
Q Flow in m3/h
d Pipe diameter in m

v kinematic viscosity (m²/s)

The current Reynolds number can also be calculated using the ABB Product Selection Assistant (PSA tool).

Measuring accuracy

Reference conditions

Flow measurement	
Set flow range	0.5 1 x Q _{vmax} DN
Ambient temperature	20 °C (68 °F) ±2 K
Relative humidity	65 %, ±5 %
Air pressure	86 106 kPa
Power supply	24 V DC
Signal cable length	30 m (98 ft)
(for remote mount design)	
Current output load	250 Ω (only 4 20 mA)
Measuring medium for calibration	Water, approx. 20 °C (68 °F), 2 bar
	(29 psi)
Calibration loop internal diameter	= internal diameter of meter
Unobstructed straight upstream	3 x DN
section	
Downstream section	1 x DN
Pressure measurement	3 x DN 5 x DN downstream of
	the flowmeter
Temperature measurement	2 x DN 3 x DN downstream after
	the pressure measurement

SwirlMaster FSS430, FSS450 Swirl flowmeter

Measured error and repeatability Flow measurement

Measured error in percentage terms from the measured value under reference conditions (including the transmitter) in the linear measuring range between R_{emin} and Q_{max} (see the chapter "Measuring range table" on page 7).

Measured error (including transmitter)	
Fluids	≤ ± 0.5 %
Gases / Steam	≤ ± 0.5 %
Current output	Additional measuring error < 0.1 %
Temperature effect	< 0.05 % / 10 K

A pipe offset in the inlet or outlet can influence the measured error.

Additional measured errors may occur if there are deviations from the reference conditions.

Reproducibility	
DN 15 (1/2")	0.3 %
DN 25 150 (1 6")	0.2 %
DN 200 400 (8 12")	0.2 %

Temperature measurement

Measured error (including transmitter): ± 1 K Repeatability: ≤ 0.2 % of measured value.

Permitted pipe vibration

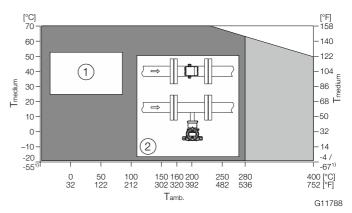
The values specified for acceleration g are intended as guide values.

The actual limits will depend on the nominal diameter and the measuring range within the entire [measuring span] and the frequency of the pipe vibration. Therefore, the acceleration value g has only limited meaning.

- Maximum acceleration 20 m/s, 2, 0 ... 150 Hz.
- Acceleration up to 1 g (10 ... 500 Hz) in accordance with IEC 60068-2-6

Ambient conditions Ambient temperature

In accordance with IEC 60068-2-78


Explosion protection design	T _{amb.}
No explosion protection	-40 85 °C (-40 185 °F)
Ex ia, Ex nA	Ex ia and Ex nA: -40 $^\circ$ C < Ta < +85 $^\circ$ C,
	dependent on Tclass
Ex d, ia, XP	-40 75 °C (-40 167 °F)
IS, NI	-40 75 °C (-40 167 °F)

Relative humidity

Version	Relative humidity
Standard	Maximum 85 %, annual average \leq 65 %

Measuring medium temperature range

T_{medium}: -55 ... 280 °C (-67 ... 536 °F)

- Fig. 4: Measuring medium temperature T_{medium} dependent on the ambient temperature T_{amb.}
- 1 Permitted temperature range for standard design
- (2) Installation for measuring medium temperatures > 150 °C
 (> 302 °F)

Measuring range table Flow measurement for liquids

Nominal Diameter	Minimum Reynolds number		Q _{max} DN ³⁾		Frequency for Q _{max} ⁴⁾	
	Re11)	Re22)	[m3/h]	[Usgpm]	[Hz, ±5 %]	
DN 15 (1/2")	2100	5000	2.5	11	297	
DN 20 (3/4")	3130	5000	4	18	194	
DN 25 (1")	5000	7500	8	35	183	
DN 32 (1 3/4")	6900	7500	16	70	150	
DN 40 (1 1/2")	8400	10000	20	88	116	
DN 50 (2")	6000	10000	30	132	100	
DN 80 (3")	9000	10000	120	528	89	
DN 100 (4")	17500	18000	180	793	80	
DN 150 (6")	28500	28500	400	1760	51	
DN 200 (8")	30300	30300	700	3082	37	
DN 300 (12")	114000	114000	1,600	7045	24	
DN 400 (16")	163000	163000	2,500	11000	19	

1) Minimum Reynolds number from which the function takes effect. For the precise flowmeter dimensions, use the PSA selection and design tool.

2) Minimum Reynolds number from which the specified accuracy is achieved. Below this value, the measuring error is 0.5 % of Q_{max}.

3) Medium velocity approx. 10 m/s (33 ft/s).

4) For information only, precise values can be found in the test log delivered with the device.

Flow measurement of gases and vapors

Nominal Diameter	Minimum Reynolds	s number	Q _{max} DN ³⁾		Frequency for Q _{max} ⁴⁾	
	Re11) F	Re22)	[m3/h]	[ft3/min]	[Hz, ±5 %]	
DN 15 (1/2")	2360 5	5000	20	12	2380	
DN 20 (3/4")	3510 5	5000	44	26	2140	
DN 25 (1")	4150 5	5000	90	53	2060	
DN 32 (1 3/4")	3650 5	5000	230	135	2150	
DN 40 (1 1/2")	6000	7500	300	177	1740	
DN 50 (2")	7650	10000	440	259	1450	
DN 80 (3")	16950	17000	1160	683	860	
DN 100 (4")	11100	12000	1725	1015	766	
DN 150 (6")	23300 2	24000	3800	2237	510	
DN 200 (8")	18400 2	20000	5800	3414	340	
DN 300 (12")	31600 3	32000	13600	8005	225	
DN 400 (16")	33500	34000	21500	12655	180	

1) Minimum Reynolds number from which the function takes effect. For the precise flowmeter dimensions, use the PSA selection and design tool.

Minimum Reynolds number from which the specified accuracy is achieved. Below this value, the measuring error is 0.5 % of Q_{max}.
 Medium velocity approx. 90 m/s (295 ft/s). For devices with nominal diameter DN 15 (1/2"), the maximum medium velocity is 60 m/s (180 ft/s).

4) For information only, precise values can be found in the test log delivered with the device.

SwirlMaster FSS430, FSS450 Swirl flowmeter

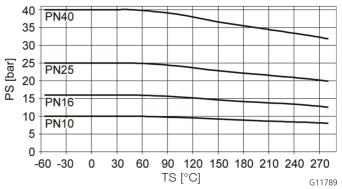
Process connections

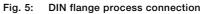
Nominal Diameter	Pressure rating
DN 15 200	Flange in accordance with DIN: PN 10 401)
(1/2" 8")	Flange in accordance with ASME:
	class 150 / 3001)
DN 300 400	Flange in accordance with DIN: PN 10 161)
(12" 16")	Flange according to ASME: class 1501)

1) Higher pressure ratings up to PN 160 / class 900 on request

Materials

Materials for the sensor


Wetted components	Temperature range
Meter tube / conduit body:	_
 Stainless steel 1.4571 (AISI 316 	
Ti) / AISI 316L / CF8 / CF8C	
 Hastelloy C (optional) 	
Sensor:	_
 Stainless steel 1.4571 (AISI 316 	
Ti)	
 Hastelloy C (optional) 	
Sensor gasket:1)	
 PTFE O-ring 	-55 260 °C
	(-67 500 °F)
 Kalrez 6375 O-ring (optional) 	-20 275 °C
	(-4 527 °F)
 Graphite (optional for high- 	-55 280 °C
temperature design)	(-67 536 °F)
Housing	Temperature range
- Stainless steel 1.4571 (AISI 316	-55 280 °C
Ti) / AISI 316L / CF8 / CF8C	(-67 536 °F)


Hastelloy C (optional)1) Other designs on request.

Transmitter

Housing	Temperature range
 Die-cast aluminum, copper 	-55 85 °C (-67 185 °F)
content < 0.3 %	
 Stainless steel CF3M, 	
corresponds to AISI 316L	
(optional)	

Material load for process connections

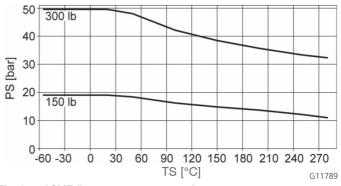
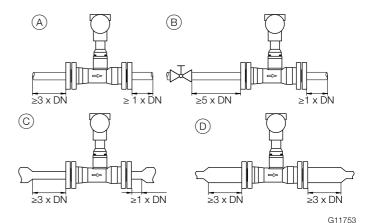


Fig. 6: ASME flange process connection

Installation conditions General information


A Vortex or Swirl flowmeter can be installed at any point in the pipeline system. However, the following installation conditions must be considered:

- Compliance with the ambient conditions
- Compliance with the recommended inlet and outlet sections
- The flow direction must correspond to that indicated by the arrow on the sensor
- Compliance with the required minimum interval for removing the transmitter and replacing the sensor
- Avoidance of mechanical vibrations of the piping (by fitting supports if necessary)
- The inside diameter of the sensor and the piping must be identical
- Avoidance of pressure oscillations in long piping systems at zero flow by fitting gates at intervals
- Attenuation of alternating (pulsating) flow during piston pump or compressor conveying by using appropriate damping devices. The residual pulse must not exceed 10 %. The frequency of the conveying equipment must not be within the range of the measuring frequency of the flowmeter.
- Valves / gates should normally be arranged in the flow direction downstream of the flowmeter (typically: 3 x DN). If the measuring medium is conveyed through piston pumps / plunger pumps or compressors (pressures for fluids > 10 bar [145 psi]), it may be subject to hydraulic vibration in the piping when the valve is closed. If this does occur, the valve absolutely has to be installed in the flow direction upstream of the flowmeter. Suitable damping devices (e.g. air vessels) might need to be fitted.

- When fluids are measured, the sensor must always be filled with measuring medium and must not run dry.
- When fluids are measured and during damping, there must be no evidence of cavitation.
- The relationship between the measuring medium and the ambient temperature must be taken into consideration (see data sheet).
- At high measuring medium temperatures > 150 °C (> 302 °F), the sensor must be installed so that the transmitter or terminal box is pointing to the side or downward.

Inlet and outlet sections

On account of its operating principle, the swirl flowmeter functions virtually without inlet and outlet sections. The figures below show the recommended inlet and outlet sections for various installations.

Installation	Inlet section	Outlet section
A Straight pipe section	min. 3 x DN	min. 1 x DN
B Valve upstream of	min. 5 x DN	min. 1 x DN
the meter tube		
C Pipe reduction	min. 3 x DN	min. 1 x DN
D Pipe extension	min. 3 x DN	min. 3 x DN

Additional inlet and outlet sections are not required downstream of reductions with flange transition pieces in accordance with DIN 28545 ($\alpha/2 = 8^{\circ}$).

SwirlMaster FSS430, FSS450 Swirl flowmeter

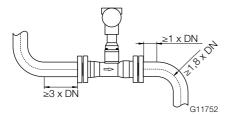


Fig. 8: Pipe sections with pipe elbows

Installation	Inlet section	Outlet section
Single pipe elbow	min. 3 x DN	min. 1 x DN
upstream or		
downstream of the		
meter tube		

If the elbow radius of single or double pipe elbows positioned upstream or downstream of the device is greater than 1.8 x DN, inlet and outlet sections are not required.

Avoiding cavitation

To avoid cavitation, a static overpressure is required downstream of the flowmeter (downstream pressure). This can be estimated using the following formula:

 $p_1 \ge 1,3 \times p_2 + 2,6 \times \Delta p'$

- ρ_1 Static gauge pressure downstream of the device (mbar)
- ρ_2 Steam pressure of fluid at operating temperature (mbar)
- $\Delta \rho'$ Pressure drop, measuring medium (mbar)

Installation at high measuring medium temperatures

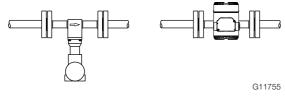


Fig. 9: Installation at high measuring medium temperatures

At high measuring medium temperatures > 150 °C (> 302 °F), the sensor must be installed so that the transmitter is pointing to the side or downward.

Installation for external pressure and temperature measurement

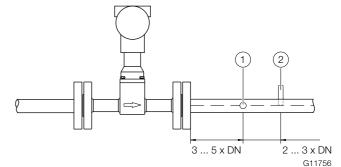


Fig. 10: Arrangement of the temperature and pressure measuring points

(1) Pressure measuring point (2) Temperature measuring point

As an option, the flowmeter can be fitted with a Pt100 for direct temperature measurement. This temperature measurement enables, for example, the monitoring of the measuring medium temperature or the direct measurement of saturated steam in mass flow units.

If pressure and temperature are to be compensated externally (e.g. with the flow computer unit), the measuring points must be installed as illustrated.

Installation of final controlling equipment

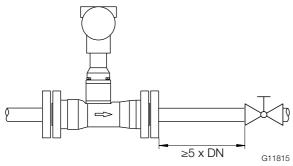


Fig. 11: Installation of final controlling equipment

Final controlling equipment must be arranged at the outflow end spaced at a minimum $5 \times DN$.

If the measuring medium is conveyed through piston pumps / plunger pumps or compressors (pressures for fluids > 10 bar [145 psi]), it may be subject to hydraulic vibration in the piping when the valve is closed.

If this does occur, it is essential that the valve be installed in the flow direction upstream of the flowmeter.

Suitable damping devices (such as air vessels if using a compressor for conveying) may need to be used.

The SwirlMaster FSS400 is particularly well suited for such arrangements.

Sensor insulation

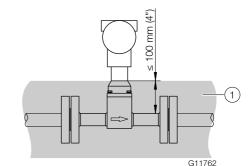


Fig. 12: Insulation of the meter tube (1) Insulation

The piping can be insulated up to a thickness of 100 mm (4 inch).

Use of trace heating

Trace heating may be used under the following conditions:

- If it is installed directly on or around the piping
- If, in the case of existing pipeline insulation, it is installed inside the insulation (the maximum thickness of 100 mm [4 inch] must not be exceeded)
- If the maximum temperature the trace heating is able to produce is less than or equal to the maximum medium temperature.

NOTE

The installation requirements set out in EN 60079-14 must be observed.

Please note that the use of trace heaters will not impair EMC protection or generate additional vibrations.

Dimensions

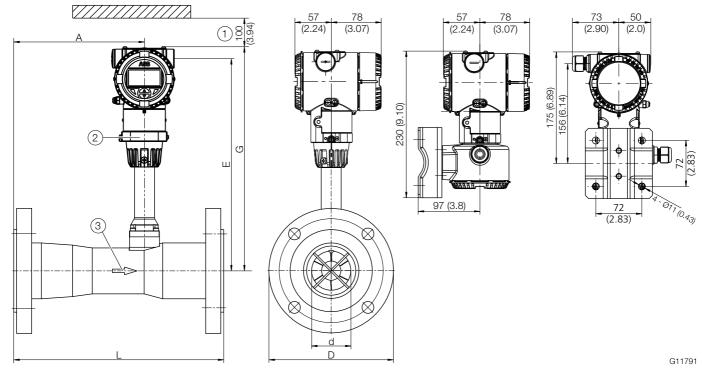


Fig. 13: Dimensions in mm (inches)

(1) Required minimum distance for removal of the transmitter and removal of the sensor unit (2) Can be rotated up to 360° (3) Flow direction

Nominal	Pressure	L	G	E	Α	D	d	Weight
Diameter	rating							[kg (lb)]
DN 15	PN 10 40	200 (7.87)	346 (13.62)	327 (12.87)	83 (3.27)	95 (3.74)	17.3 (0.68)	5.8 (12.8)
DN 20	PN 10 40		349 (13.74)	330 (12.99)	68 (2.68)	105 (4.13)	22.6 (0.89)	2.4 (5.3)
DN 25	PN 10 40	150 (5.91)	348 (13.70)	329 (12.95)	67 (2.64)	115 (4.53)	28.1 (1.11)	3.5 (7.7)
DN 32	PN 10 40		346 (13.62)	327 (12.87)	68 (2.68)	140 (5.51)	37.1 (1.46)	4.7 (10.4)
DN 40	PN 10 40	200 (7.87)	350 (13.78)	331 (13.03)	79 (3.11)	150 (5.91)	42.1 (1.66)	8 (17.6)
DN 50	PN 10 40		353 (13.89)	334 (13.15)	106 (4.17)	165 (6.50)	51.1 (2.01)	7.2 (15.9)
DN 80	PN 10 40	300 (11.81)	356 (14.01)	337 (13.26)	159 (6.26)	200 (7.87)	82.6 (3.25)	12.2 (26.9)
DN 100	PN 10 16	350 (13.78)	360 (14.17)	341 (13.42)	189 (7.44)	220 (8.66)	101.1 (3.98)	14.2 (31.3)
	PN 25 40					235 (9.25)	101 (3.98)	18 (39.7)
DN 150	PN 10 16	480 (18.90)	384 (15.12)	365 (14.37)	328 (12.91)	285 (11.22)	150.1 (5.91)	28.5 (62.8)
	PN 25 40					300 (11.81)	150.1 (5.91)	34.5 (76.1)
DN 200	PN 10 / PN 16	600 (23.62)	404 (15.90)	385 (15.15)	436 (17.17)	340 (13.39)	203.1 (8.00)	50 (110.2)
	PN 25 / PN 40					360 / 375	203.1 (8.00)	59 / 66
						(14.17 / 14.76)		(130.1 / 145.5
DN 300	PN 10 / PN 16	1000 (39.37)	450 (17.71)	431 (16.97)	662 (26.06)	445 / 460	309.7 (12.19)	171 / 186
						(17.52 / 18.11)		(377.0 / 410.1
DN 400	PN 10 / PN 16	1274 (50.16)	486 (19.13)	467 (18.38)	841 (33.11)	565 / 580	390.4 (15.37)	245 / 266
						(22.24 / 22.83)		(540.1 / 586.4

Tolerance for dimension L: DN 15 ... 200 +0 / -3 mm (+0 / -0.12 inch), DN 300 ... 400 +0 / -5 mm (+0 / -0.20 inch)

Nominal Diameter	Pressure rating	L	G	E	Α	D	d	Weight [kg (lb)]
1/2"	CL 150	200 (7.87)	346 (13.62)	327 (12.87)	83 (3.27)	88.9 (3.5)	15.8 (0.62)	5.3 (11.7)
	CL 300					95.2 (3.75)		5.8 (12.8)
3/4"	CL 150	220 (8.66)	349 (13.74)	330 (12.99)	68 (2.68)	98.4 (3.87)	22.6 (0.89)	2.1 (4.6)
	CL 300	230 (9.06)				117.5 (4.63)		3.0 (6.6)
1"	CL 150	150 (5.91)	348 (13.70)	329 (12.95)	67 (2.64)	108 (4.25)	28.1 (1.1)	3.4 (7.5)
	CL 300					124 (4.88)		3.6 (7.9)
1 1/4"	CL 150	150 (5.91)	346 (13.62)	327 (12.87)	68 (2.68)	118 (4.65)	37.1 (1.46)	3.7 (8.2)
	CL 300					133 (5.24)		5.4 (11.9)
1 1/2"	CL 150	200 (7.87)	350 (13.78)	331 (13.03)	79 (3.11)	127 (5)	42.1 (1.66)	6.8 (15)
	CL 300					155.6 (6.13)		8.9 (19.6)
2"	CL 150	200 (7.87)	353 (13.89)	334 (13.15)	106 (4.17)	152.4 (6)	51.1 (2.01)	7.1 (15.7)
	CL 300					165 (6.5)		9.8 (21.61)
3"	CL 150	300 (11.81)	356 (14.01)	337 (13.26)	159 (6.26)	190.5 (7.5)	82.6 (3.25)	11.7 (25.8)
	CL 300					209.5 (8.25)		16.2 (35.7)
4"	CL 150	350 (13.78)	360 (14.17)	341 (13.26)	189 (7.44)	228.6 (9)	101.1 (3.98)	18.0 (39.7)
	CL 300					254 (10)		27.5 (60.6)
6"	CL 150	480 (18.9)	384 (15.12)	365 (14.37)	328 (12.9)	279.4 (11)	150.1 (5.91)	30.0 (66.1)
	CL 300					317.5 (12.5)		46.0 (101.4
8"	CL 150	600 (23.62)	404 (15.90)	385 (15.15)	436 (17.17)	343 (13.5)	203.1 (8)	45.0 (99.2)
	CL 300					381 (15)		75 (165.4)
12"	CL 150	1000 (39.37)	450 (17.71)	431 (16.97)	662 (26.1)	482.6 (19)	309.7 (12.19)	182 (401.2)
16"	CL 150	1274 (50.16)	486 (19.13)	467 (18.38)	841 (33.1)	596.9 (23.5)	390.4 (15.37)	260 (573.2)

Tolerance for dimension L: 1/2" ... 8" +0 / -3 mm (+0 / -0.12 inch), 12" ... 16" +0 / -5 mm (+0 / -0.20 inch)

Transmitter specifications

General remarks

The transmitter uses two-wire technology. The same wires are used for the power supply and the analog and digital communication.

Features

- 4 ... 20 mA current / HART 7 output.
- Current output for an alarm can be configured to 21 ... 23 mA (NAMUR NE43).
- Measuring range: Can be configured between 0.15 ... 1 x Q_{max}DN.
- Operating mode can be configured for the flow measurement (see chapter "Operating modes" on page 14).
- Programmable digital output. Can be configured as frequency output, pulse output or binary output (option for FSx430, standard for FSx450).
- Programmable analog input 4 ... 20 mA for connection of external sensors, e.g. pressure or temperature sensor (only for FSx450).
- Parameterization by means of HART communication.
- Damping: 0.2 ... 100 s configurable (1 τ).
- Low flow cut-off: 0 ... 5 % for current and pulse output.
- Measuring medium parameters can be changed at any time (pressure and temperature influence, density, units, etc.).
- Simulation of current and binary output (manual process execution).

Operating modes

The following operating modes can be selected depending on the design.

Liquid measuring medium	Gas / vapor measuring medium		
 Liquid volumes 	 Gas volumes 		
 Liquid standard volumes 	 Gas standard volumes 		
(temperature-compensated)	– Gas mass		
 Liquid mass 	 Gas energy¹⁾ 		
 Liquid energy¹⁾ 	 Biogas volumes 		
	 Biogas standard volumes 		
	 Vapor volumes 		
	 Vapor mass 		
	 Vapor energy¹⁾ 		

1) For FSx450 only

LCD indicator (option)

- High-contrast LCD indicator.
- Display of the current flow rate as well as the total flow rate or the temperature of the measuring medium (optional).
- Application-specific visualizations which the user can select. Four operator pages can be configured to display multiple values in parallel.
- Plain text fault diagnostics
- Menu-guided parameterization with four buttons.
- "Easy Set-up" function for fast commissioning.
- Parameterization of the device through the front glass with the housing closed.
- During ongoing operation, the LCD indicator can be connected or disconnected and therefore also used as a configuration tool for other devices.

IP decree of protection

- IP 66 / 67 in accordance with EN 60529
- NEMA 4x
- "Dual seal device" in accordance with ANSI/ISA 12.27.01.
 Only for devices with explosion-proof design with hazardous area electrical certification "Ex d" or "XP".

Electromagnetic compatibility

Electromagnetic compatibility of equipment for process and lab control technology 5/93 and EMC Directive 2004/108/EC (EN 61326-1).

The transmitter is optionally available with EMC protection in accordance with NAMUR NE 21.

NOTE

When the housing is open, EMC protection or protection against accidental contact is restricted.

EMC / HF effect on the current output

Tested in accordance with EN 61326.

Output error of less than ± 0.025 % of the measuring range for twisted pair cables in the range:

- 80 ... 1000 MHz for radiated field strength of 10 V/m;
- 1.4 ... 2.0 GHz for radiated field strength of 3 V/m;
- 2.0 ... 2.7 GHz for radiated field strength of 1 V/m.

Magnetic field disruptions in the current output

Tested in accordance with EN 61326.

Output error of less than $\pm 0.025\%$ of the measuring range at 30 A/m (eff.).

Remote mount design

In remote mount design, the sensor and transmitter are connected by a signal cable up to 30 m (98 ft) long. The signal cable is permanently connected to the transmitter and can be made shorter if required.

Electrical connections Electrical connection

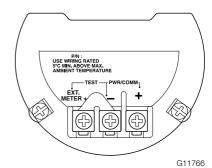


Fig. 14: Terminals without digital output

Terminal	Function / comment
PWR/COMM +	Power supply, current output / HART output
PWR/COMM -	
EXT. METER	Not assigned

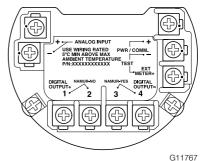
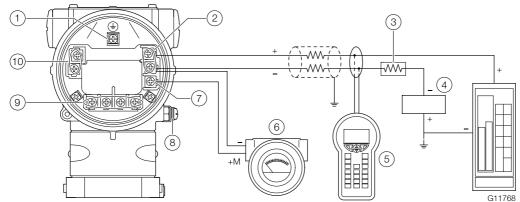



Fig. 15: Terminals with digital output and analog input

Terminal	Function / comment
PWR/COMM +	Power supply, current output / HART output
PWR/COMM -	
EXT. METER +	Current output 4 20 mA for external display
DIGITAL OUTPUT 1+	Digital output, positive pole
DIGITAL OUTPUT 2	Bridge after terminal 1+, NAMUR output
	deactivated
DIGITAL OUTPUT 3	Bridge after terminal 4-, NAMUR output
	activated
DIGITAL OUTPUT 4-	Digital output, negative pole
ANALOG INPUT +	Analog input 4 20 mA for remote transmitter,
ANALOG INPUT -	e.g. for temperature, pressure, etc.

Connection examples

Fig. 16: Connection example

(1) Internal earthing terminal (2) Power supply, current / HART output (3) Load resistance (4) Power supply (5) Handheld terminal (6) External display (7) Terminal for external display (8) External earthing terminal (9) Digital output (10) Analog input

For connecting the signal voltage / supply voltage, twisted cables with a conductor cross-section of 18 ... 22 AWG / 0.8 ... 0.35 mm² and a maximum length of 1500 m (4921 ft) must be used. For longer leads a greater cable cross section is required.

For shielded cables the cable shielding must only be placed on one side (not on both sides).

For the earthing on the transmitter, the inner terminal with the corresponding marking can also be used.

The output signal (4 20 mA) and the power supply are conducted via the same conductor pair.

The transmitter works with a supply voltage between

12 ... 42 V DC. For devices with the type of protection "Ex ia, intrinsic safety" (FM, CSA, and SAA approval), the supply voltage must not exceed 30 V DC. In some countries the maximum supply voltage is limited to lower values. The permissible supply voltage is specified on the name plate on the top of the transmitter.

The possible lead length depends on the total capacity and the total resistance and can be estimated based on the following formula.

$$L = \frac{65 \times 106}{R \times C} - \frac{Ci + 10000}{C}$$

L Lead length is meters

R Total resistance in Ω

C Lead capacity

Ci Maximum internal capacity in pF of the HART field devices in the circuit

Avoid installing the cable together with other power leads (with inductive load, etc.), as well as the vicinity to large electrical installations.

The HART handheld terminal can be connected to any connection point in the circuit if a resistance of at least 250 Ω is present in the circuit. If there is resistance of less than 250 Ω, an additional resistor must be provided to enable communication. The handheld terminal is connected between the resistor and transmitter, not between the resistor and the

power supply.

Electrical data for inputs and outputs Power supply, current output / HART output

Power supply, current output / HART output				
Supply voltage	12 42 V DC			
Residual ripple	Maximum 5 % or ±1.5 Vpp			
Power consumption	< 1 W			

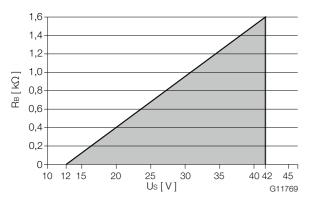
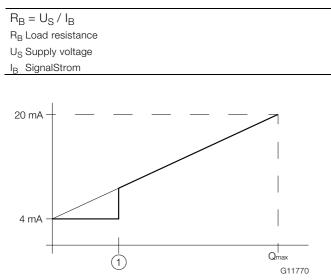
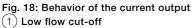




Fig. 17: Load diagram of the current output; load vs. supply voltage

In HART communication, the smallest load is 250 Ω . The load R_B is calculated as a function of the available supply voltage U_S and the selected signal current I_B as follows:

The measured value at the current output behaves as shown in the figure.

The current curve proceeds above the low flow as a straight line, which in the Q = 0 operating mode has the value 4 mA and in the Q = Q_{max} operating mode has the value 20 mA.

Due to the low flow cut-off, the flow is set to below x % Qmax or the low flow is set to 0, meaning the current is 4 mA.

Digital output

The devices can be ordered with an optional digital output. This output can be configured by software as:

- Frequency output (up to 10.5 kHz)
- Pulse output (up to 2 kHz)
- Logic output (on / off, e.g. to display an alarm signal)

Digital output	
Operating voltage	16 30 V DC
Output current	Maximum 20 mA
Output "closed"	$0 \text{ V} \le \text{U}_{\text{low}} \le 2 \text{ V}$
	2 mA ≤I _{low} ≤ 20 mA
Output "open"	$16 \text{ V} \le \text{U}_{\text{high}} \le 30 \text{ V}$
	0 mA ≤I _{hiqh} ≤ 0.2 mA
Pulse output	f _{max} : 10 kHz
	Pulse width: 0.05 2000 ms
Frequency output	f _{max} : 10.5 kHz

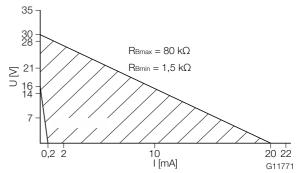
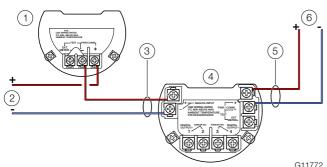


Fig. 19: Range of the external supply voltage and current


The external resistance R_B is in the range of 1.5 k $\Omega \leq R_B \leq$ 80 k Ω , as shown in Fig. 19.

Analog input 4 ... 20 mA

At the analog input (4 ... 20 mA), an external pressure transmitter (e.g. ABB pressure transmitter model 261 / 266), an external temperature transmitter, a gas analyzer for the net methane content in the case of biogas, a density meter or a mass meter for a density signal can be connected. The analog input can be configured using the relevant software as:

- Input for the pressure measurement for pressure compensation for the flow measurement of gases and vapor.
- Input for the return temperature measurement for energy measurement.
- Input for the gas content for the net metering of methane (biogas).
- Input for the density measurement for calculation of the mass flow.

Current input				
Terminals	ANALOG INPUT+ / ANALOG			
	INPUT-			
Operating voltage	16 30 V DC			
Input current	3.8 20.5 mA			
Equivalent resistance	90 Ω			

G11

- Fig. 20: Connection of transmitters at the analog input (example)
- (1) Remote transmitter (2) Power supply for the remote transmitter (3) Cable entry for the analog input (4) SwirlMaster FSS430, FSS450
- (5) Cable entry for the current output
- (6) Power supply SwirlMaster FSS430, FSS450

HART communication with remote transmitter

As the device has a two-wire technology design, an external pressure or temperature transmitter with HART

communication (e.g. ABB pressure transmitter model 261 / 266) can be connected via the current / HART output (4 ... 20 mA).

The remote transmitter must be operated in HART burst mode.

The SwirlMaster FSS430, FSS450 transmitter supports HART communication up to the HART7 protocol.

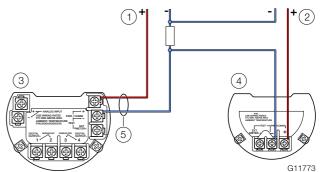


Fig. 21: Connection of transmitters with HART communication (example)

- 1 Power supply SwirlMaster FSS430, FSS450
- (2) Power supply for the remote transmitter
- (3) SwirlMaster FSS430, FSS450 (4) Remote transmitter

5 Cable entry for the current output

Use in potentially explosive atmospheres

Electrical data

Zone 2, 22 - type of pro	tection "non-sparking"
Ex-marking	
ATEX	
Order code	B1

Order code	B1	
Type examination certificate	FM13ATEX0056X	
II 3G Ex nA IIC T4 to T6 Gc		
II 3 D Ex tc IIIC T85 °C DC		
For electrical parameters, see certificate FM13ATEX0056X		

IECEx				
Order code	N1			
Certificate of conformity	IECEx FME 13.0004X			
Ex nA IIC T4 to T6 Gc				
Ex tc IIIC T85 °C DC				
For electrical parameters, see certification IECEx FME 13.0004X				

FM approval for USA and Canada				
Order code	F3			
CL I, ZONE 2 AEx/Ex nA IIC T6, T5, T4				
CL I/DIV 2/GP ABCD				
NI CL 1/DIV 2/GP ABCD, DIP CL II,III/DIV 2/GP EFG				
Housing: TYPE 4X				

NEPSI	
Order code	S2
Ex nA IIC T4 to T6 Gc	
DIP A22 Ta 85 °C	
For electrical parameters, see certificate GYJ14.1088X	
For electrical parameters, see certific	cate GYJ14.1088X

Power supply

Ex nA U_B = 12 ... 42 V DC

Switch output

The switch output is designed as an optoelectronic coupler or a NAMUR contact (in accordance with DIN 19234).

- When the NAMUR contact is closed, the internal resistance is approx. 1000 Ω .
- When the contact is open, the internal resistance is $> 10 \text{ k}\Omega$.

The switch output can be changed over to "optoelectronic coupler" if required.

- NAMUR with switching amplifier
- Switch output Ex nA: U_B = 16 ... 30 V, I_B = 2 ... 30 mA

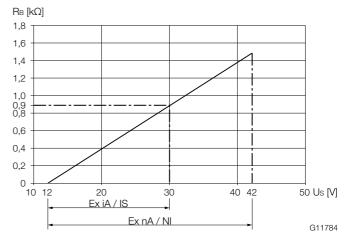


Fig. 22: Power supply in Zone 2, explosion protection, non-sparking

The minimum voltage U_S of 12 V is based on a load of 0 $\Omega.$

- U_S Supply voltage
- R_B Maximum permissible load in the power supply circuit, e.g. indicator, recorder or power resistor.

Power supply / current output / HART output	
Terminals	PWR/COMM + / PWR/COMM -
U _M	45 V
Zone 2: Ex nA IIC T4 to T6 Gc	
T _{amb} = -40 85 °C*	
Zone 22 Ex tc IIIC T85 °C Dc	
T _{amb} = -40 75 °C	
CL I, ZONE 2 AEx/Ex nA IIC T6, T5, T4	
CL I/DIV 2/GP ABCD TYPE 4X	
NI CL 1/DIV 2/GP ABCD, DIP CL II,III/DIV 2/GP EFG	
Housing: TYPE 4X	

Digital output	
Terminals	DIGITAL OUTPUT 1+ / DIGITAL OUTPUT 4-
U _M	45 V
Zone 2: Ex nA IIC T4 to T6 Gc	
Zone 22 Ex tc IIIC T85 °C Dc	
$T_{amb} = -40 \dots 75 \ ^{\circ}C^{1)}$	
CL I, ZONE 2 AEx/Ex nA IIC T6, T5, T4	
CL I/DIV 2/GP ABCD TYPE 4X	
NI CL 1/DIV 2/GP ABCD, DIP CL II,III/DIV 2/GP EFG	

1) See temperature ranges in the chapter titled "Temperature data" on page 20.

Analog input	
Terminals	ANALOG INPUT + / ANALOG INPUT -
U _M	45 V
Zone 2: Ex nA IIC T4 to T6 Gc	
Zone 22 Ex tc IIIC T85 °C Dc	
T _{amb} = -40 85 °C	
CL I, ZONE 2 AEx/Ex nA IIC T6, T5, T4	
CL I/DIV 2/GP ABCD TYPE 4X	
NI CL 1/DIV 2/GP ABCD, DIP CL II,III/DIV 2/GP EFG	

Special Requirements

The devices must be installed in a protected environment in accordance with the specific conditions on the test certificate. Pollution degree 3 (see IEC 60664-1) must not be exceeded for the macro environment of the device.

The devices are in accordance with the IP rating IP66 / IP67. If the device is installed correctly, this requirement is met by the housing as standard.

When connected to the power supply / not connected to the power supply, the electrical circuits must not exceed overvoltage category III / II.

Temperature data

Operating temperature ranges:

- The ambient temperature range T_{amb.} is -40 ... 85 °C (-40 ... 185 °F).
- This is dependent on the temperature class and measuring medium temperature, as listed in the following tables.
- The measuring medium temperature T_{medium} is -200 ... 400 °C (-328 ... 752 °F).

Without LCD indicator

Temperature class	T _{amb.} max.	T _{medium} max.
T4	≤ 85 °C	90 °C
	≤ 82 °C	180 °C
	≤ 81 °C	280 °C
	≤ 79 °C	400 °C
Τ4	≤ 70 °C	90 °C
	≤ 67 °C	180 °C
	≤ 66 °C	280 °C
	≤ 64 °C	400 °C
Т5	≤ 56 °C	90 °C
	≤ 53 °C	180 °C
	≤ 52 °C	280 °C
	≤ 50 °C	400 °C
Τ6	≤ 44 °C	90 °C
	≤ 41 °C	180 °C
	≤ 40 °C	280 °C
	≤ 38 °C	400 °C

With LCD indicator, order code L1

Temperature class	T _{amb.} max.	T _{medium} max.
Τ4	≤ 85 °C	90 °C
	≤ 82 °C	180 °C
	≤ 81 °C	280 °C
	≤ 79 °C	400 °C
Τ4	≤ 70 °C	90 °C
	≤ 67 °C	180 °C
	≤ 66 °C	280 °C
	≤ 64 °C	400 °C
Т5	≤ 40 °C	90 °C
	≤ 37 °C	180 °C
	≤ 36 °C	280 °C
	≤ 34 °C	400 °C
T6	≤ 40 °C	90 °C
	≤ 37 °C	180 °C
	≤ 36 °C	280 °C
	≤ 34 °C	400 °C

Temperature class	T _{amb.} max.	T _{medium} max.
Τ4	≤ 60 °C	90 °C
	≤ 57 °C	180 °C
	≤ 56 °C	280 °C
	≤ 54 °C	400 °C
Τ4	≤ 60 °C	90 °C
	≤ 57 °C	180 °C
	≤ 56 °C	280 °C
	≤ 54 °C	400 °C
T5	≤ 56 °C	90 °C
	≤ 53 °C	180 °C
	≤ 52 °C	280 °C
	≤ 50 °C	400 °C
Τ6	≤ 44 °C	90 °C
	≤ 41 °C	180 °C
	≤ 40 °C	280 °C
	≤ 38 °C	400 °C

With LCD indicator, order code L2 (operation through the front glass)

Zone 0, 1, 20, 21 - type of protection "intrinsically safe" Ex-marking

ATEX	
Order code	A4
Type examination certificate	FM13ATEX0055X

II 1 G Ex ia IIC T4 to T6 Ga

ll 1 D Ex ia IIIC T85 °C

For electrical parameters, see certificate FM13ATEX0055X

IECEx	
Order code	N2
Certificate of conformity	IECEx FME 13.0004X
Ex ia IIC T4 to T6 Ga	
Ex ia IIIC T85 °C	
For electrical parameters, see certificate IECEx FME 13.0004X	

FM approval for USA and Canada

Order code	F4
IS/S. Intrinseque(Entity) CL I,	
Zone 0 AEx/Ex ia IIC T6, T5, T4	
CI I/Div 1/ABCD IS-CL II, III/DIV 1/EFG TYPE 4X	
IS Control Drawing: 3KXF065215U0109	

NEPSI	
Order code	S6
Ex ia IIC T4 to T6 Ga	
Ex iaD 20 T85 °C	
For electrical parameters, see certificate GYJ14.1088X	

Power supply

Ex ia: $U_i = 30 \text{ V DC}$

Switch output

The switch output is designed as an optoelectronic coupler or a NAMUR contact (in accordance with DIN 19234).

- When the NAMUR contact is closed, the internal resistance is approx. 1000 Ω .
- When the contact is open, the internal resistance is $> 10 \text{ k}\Omega$.

The switch output can be changed over to "optoelectronic coupler" if required.

- NAMUR with switching amplifier
- Switch output:
 - Ex ia: $U_i = 30 \text{ V DC}$

Electrical and temperature data

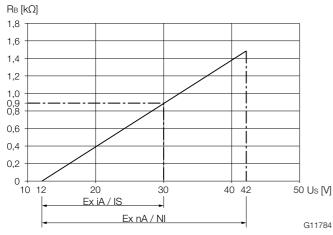


Fig. 23: Power supply in Zone 2, explosion protection, intrinsic safety

The minimum voltage U_S of 12 V is based on a load of 0 $\Omega.$ $U_S\,$ Supply voltage

R_B Maximum permissible load in the power supply circuit, e.g. indicator, recorder or power resistor.

Power supply / current output / HART output		
Terminals	PWR/COMM + / PWR/COMM -	
Zone 0: Ex ia IIC T4 to	o T6 Ga	
$T_{amb} = -40 \dots 85 \ ^{\circ}C^{1)}$		
U _{max}	30 V	
_I _{max}	See the chapter titled "Limit value tables" on page	
Pi	23	
C _i	 — 13 nF for indicator option L1 	
	 17 nF for all other options 	
<u> </u>	10 μH	
Zone 20: Ex ia IIIC T85 °C		
$T_{amb} = -40 \dots 85 \ ^{\circ}C^{-1}$		
IS/S. Intrinseque (Entity) CL I,		
Zone 0 AEx/Ex ia IIC T6, T5, T4		
CI I/Div 1/ABCD IS-CL II, III/DIV 1/EFG TYPE 4X		
IS Control Drawing: 3KXF065215U0109		

1) See temperature ranges in the chapter titled "Limit value tables" on page 23.

Digital output	Digital output				
Terminals	DIGITAL OUTPUT 1+ / DIGITAL OUTPUT 4-				
Zone 0: Ex ia IIC T4 to	o T6 Ga				
U _{max}	30 V				
I _{max}	30 mA				
Ci	7 nF				
L _i	0 mH				
Zone 20: Ex ia IIIC T8	Zone 20: Ex ia IIIC T85 °C				
Tamb = -40 85 °C	Tamb = -40 85 °C ¹⁾				
IS/S. Intrinseque (Entity) CL I,					
Zone 0 AEx/Ex ia IIC T6, T5, T4					
CI I/Div 1/ABCD IS-CL II, III/DIV 1/EFG TYPE 4X					
IS Control Drawing: 3	KXF065215U0109				

Analog input				
Terminals	ANALOG INPUT + / ANALOG INPUT -			
Zone 0: Ex ia IIC T4 to	o T6 Ga			
U _{max}	See the chapter titled "Limit value tables" on page			
I _{max}	23			
Ci	7 nF			
Li	0 mH			
Zone 20: Ex ia IIIC T8	5 °C			
$T_{amb} = -40 \dots 85 \ ^{\circ}C^{-1}$				
IS/S. Intrinseque (Entity) CL I,				
Zone 0 AEx/Ex ia IIC T6, T5, T4				
CI I/Div 1/ABCD IS-CL II, III/DIV 1/EFG TYPE 4X				
IS Control Drawing: 3	KXF065215U0109			

1) See temperature ranges in the chapter titled "Limit value tables" on page 23.

Special Requirements

The devices must be installed in a protected environment in accordance with the specific conditions on the test certificate. Pollution degree 3 (see IEC 60664-1) must not be exceeded for the macro environment of the device.

The devices are in accordance with the IP rating IP66 / IP67. If the device is installed correctly, this requirement is met by the housing as standard.

When connected to the power supply / not connected to the power supply, the electrical circuits must not exceed overvoltage category III / II.

For input limits or analog input limits, see the chapter titled "Limit value tables" on page 23.

Limit value tables

Operating temperature ranges:

- The ambient temperature range T_{amb} of the devices is -40 ... 85 °C.
 The measuring medium temperature range T_{medium} is -200 ... 400 °C.

Devices without LCD indicator

Power supply, curren Temperature class	T max	T max	11	1	P _i max
	T _{amb} max.	T _{medium} max.	U _{max}	I _{max}	
Τ4	≤ 85 °C	90 °C	30 V	100 mA	0.75 W
	≤ 82 °C	180 °C			
	≤ 81 °C	280 °C			
	≤ 79 °C	400 °C			
Τ4	≤ 70 °C	90 °C	30 V	160 mA	1.0 W
	≤ 67 °C	180 °C			
	≤ 66 °C	280 °C			
	≤ 64 °C	400 °C			
Т5	≤ 56 °C	90 °C	30 V	100 mA	1.4 W
	≤ 53 °C	180 °C			
	≤ 52 °C	280 °C			
	≤ 50 °C	400 °C			
Т6	≤ 44 °C	90 °C	30 V	50 mA	0.4 W
	≤ 41 °C	180 °C			
	≤ 40 °C	280 °C			
	≤ 38 °C	400 °C			

Digital output					
Temperature class	T _{amb} max.	T _{medium} max.	U _{max}	I _{max}	P _i max
T4	≤ 85 °C	90 °C	30 V	30 mA	1.0 W
	≤ 82 °C	180 °C			
	≤ 81 °C	280 °C			
	≤ 79 °C	400 °C			
T4	≤ 70 °C	90 °C	30 V	30 mA	1.0 W
	≤ 67 °C	180 °C			
	≤ 66 °C	280 °C			
	≤ 64 °C	400 °C			
Т5	≤ 56 °C	90 °C	30 V	30 mA	1.0 W
	≤ 53 °C	180 °C			
	≤ 52 °C	280 °C			
	≤ 50 °C	400 °C			
Т6	≤ 44 °C	90 °C	30 V	30 mA	1.0 W
	≤ 41 °C	180 °C			
	≤ 40 °C	280 °C			
	≤ 38 °C	400 °C			

Devices with LCD indicator, order code L1

Power supply, curren	t / HART output, and	alog input			
Temperature class	T _{amb} max.	T _{medium} max.	U _{max}	I _{max}	P _i max
Τ4	≤ 85 °C	90 °C	30 V	100 mA	0.75 W
	≤ 82 °C	180 °C			
	≤ 81 °C	280 °C			
	≤ 79 °C	400 °C			
Τ4	≤ 70 °C	90 °C	30 V	160 mA	1.0 W
	≤ 67 °C	180 °C			
	≤ 66 °C	280 °C			
	≤ 64 °C	400 °C			
Т5	≤ 40 °C	90 °C	30 V	100 mA	1.4 W
	≤ 37 °C	180 °C			
	≤ 36 °C	280 °C			
	≤ 34 °C	400 °C			
Т6	≤ 40 °C	90 °C	30 V	50 mA	0.4 W
	≤ 37 °C	180 °C			
	≤ 36 °C	280 °C			
	≤ 34 °C	400 °C			

Digital output					
Temperature class	T _{amb} max.	T _{medium} max.	U _{max}	I _{max}	P _i max
Τ4	≤ 85 °C	90 °C	30 V	30 mA	1.0 W
	≤ 82 °C	180 °C			
	≤ 81 °C	280 °C			
	≤ 79 °C	400 °C			
Τ4	≤ 70 °C	90 °C	30 V	30 mA	1.0 W
	≤ 67 °C	180 °C			
	≤ 66 °C	280 °C			
	≤ 64 °C	400 °C			
Т5	≤ 40 °C	90 °C	30 V	30 mA	1.0 W
	≤ 37 °C	180 °C			
	≤ 36 °C	280 °C			
	≤ 34 °C	400 °C			
Т6	≤ 40 °C	90 °C	30 V	30 mA	1.0 W
	≤ 37 °C	180 °C			
	≤ 36 °C	280 °C			
	≤ 34 °C	400 °C			

Power supply, currer	nt / HART output, an	alog input			
Temperature class	T _{amb} max.	T _{medium} max.	U _{max}	I _{max}	P _i max
T4	≤ 60 °C	90 °C	30 V	100 mA	0.75 W
	≤ 57 °C	180 °C			
	≤ 56 °C	280 °C			
	≤ 54 °C	400 °C			
Τ4	≤ 60 °C	90 °C	30 V	160 mA	1.0 W
	≤ 57 °C	180 °C			
	≤ 56 °C	280 °C			
	≤ 54 °C	400 °C			
Т5	≤ 56 °C	90 °C	30 V	100 mA	1.4 W
	≤ 53 °C	180 °C			
	≤ 52 °C	280 °C			
	≤ 50 °C	400 °C			
Т6	≤ 44 °C	90 °C	30 V	50 mA	0.4 W
	≤ 41 °C	180 °C			
	≤ 40 °C	280 °C			
	≤ 38 °C	400 °C			

Devices with LCD indicator, order code L2 (operation through the front glass)

Digital output					
Temperature class	T _{amb} max.	T _{medium} max.	U _{max}	I _{max}	P _i max
Τ4	≤ 60 °C	90 °C	30 V	30 mA	1.0 W
	≤ 57 °C	180 °C			
	≤ 56 °C	280 °C			
	≤ 54 °C	400 °C			
T4	≤ 60 °C	90 °C	30 V	30 mA	1.0 W
	≤ 57 °C	180 °C			
	≤ 56 °C	280 °C			
	≤ 54 °C	400 °C			
T5	≤ 56 °C	90 °C	30 V	30 mA	1.0 W
	≤ 53 °C	180 °C			
	≤ 52 °C	280 °C			
	≤ 50 °C	400 °C			
Т6	≤ 44 °C	90 °C	30 V	30 mA	1.0 W
	≤ 41 °C	180 °C			
	≤ 40 °C	280 °C			
	≤ 38 °C	400 °C			

Zone 1, 21 - type of protection "flameproof (enclosure)" Ex-marking

ATEX			
Order code	A9		
Type examination certificate	FM13ATEX0057X		
II 2 G Ex d ia IIC T6 Gb/Ga – II 2 D Ex tb IIIC T85 °C Db			
(-40 °C < Ta < +75 °C) supply voltage 42 V DC,			
Um: 45 V			

	IECEx	
	Order code	N3
	Certificate of conformity	IECEx FME 13.0004X
Ex d ia IIC T6 Gb/Ga-Ex tb IIIC T85 °C Db		

(-40 $^{\circ}\text{C}$ < Ta < +75 $^{\circ}\text{C})$ supply voltage 42 V DC,

Um = 45 V

FM approval for USA and Canada				
Order code	F1			
XP-IS (US) CL I/DIV I/GP BCD, DIP CL II, III/DIV I/GP EFG				
XP-IS (Canada) CL I/DIV I/GP BCD, DIP CL II, III/DIV I/GP EFG				
CL I, ZONE 1, AEx/Ex d ia IIC T6 -40 °C < Ta < +75 °C				
TYPE 4X Tamb = 85 °C "Dual seal device"				

S1

NEPSI

Order code

Ex d ia IIC T6 Gb / Ga

DIP A21 Ta 85 °C

For electrical parameters, see certificate GYJ14.1088X

Power supply

Ex d ia Gb/Ga: $U_B = 12 \dots 42 \text{ V DC}$

Switch output

The switch output is designed as an optoelectronic coupler or a NAMUR contact (in accordance with DIN 19234).

- When the NAMUR contact is closed, the internal resistance is approx. 1000 Ω .
- When the contact is open, the internal resistance is $\ >$ 10 kΩ.

The switch output can be changed over to "optoelectronic coupler" if required.

- NAMUR with switching amplifier
- Switch output:
 Ex d ia: Ui = 45 V

IMPORTANT

The power supply and the digital output must be either only intrinsically safe or only non-intrinsically safe. A combination of the two is not permitted.

Intrinsically safe circuits must have potential equalization in place along the entire length of the cable of the circuit.

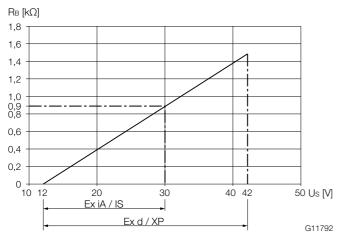


Fig. 24: Power supply in Zone 1, explosion protection

The minimum voltage U_S of 12 V is based on a load of 0 $\Omega.$

- U_S Supply voltage
- R_B Maximum permissible load in the power supply circuit, e.g. indicator, recorder or power resistor.

Power supply / current output / HART output				
Terminals	PWR/COMM + / PWR/COMM -			
U _M	45 V			
Zone 1: Ex d ia IIC T6	Gb/Ga			
T _{amb} = -40 75 °C				
Zone 21 Ex tb IIIC T85 °C Db				
T _{amb} = -40 75 °C				
XP-IS (US) CL I/DIV I/GP BCD, DIP CL II, III/DIV I/ GP EFG				
XP-IS (Kanada) CL I/DIV I/GP BCD, DIP CL II, III/ DIV I/GP EFG				
CL I, ZONE 1, AEx/Ex d ia IIC T6 -40 °C < Ta < +75 °C				
TYPE 4X Tamb = 75 °C "Dual seal device"				

Digital output							
Terminals	DIGITAL OUTPUT 1+ / DIGITAL OUTPUT 4-						
U _M	45 V						
Zone 1: Ex d ia IIC T6 Gb/Ga							
T _{amb} = -40 75 °C							
Zone 21 Ex tb IIIC T85	5 °C Db						
T _{amb} = -40 75 °C							
XP-IS (US) CL I/DIV I/0	GP BCD, DIP CL II, III/DIV I/ GP EFG						
XP-IS (Kanada) CL I/D	IV I/GP BCD, DIP CL II, III/ DIV I/GP EFG						
CL I, ZONE 1, AEx/Ex	d ia IIC T6 -40 °C < Ta < +75 °C						
TYPE 4X Tamb = 75 °	C "Dual seal device"						
Analog input							
Terminals	ANALOG INPUT + / ANALOG INPUT -						
U _M	45 V						
Zone 1: Ex d ia IIC T6 Gb/Ga							
$T_{cmb} = -40 75 \ ^{\circ}C$							

T_{amb} = -40 ... 75 °C Zone 21 Ex tb IIIC T85 °C Db

 $\label{eq:Tamb} \begin{array}{l} T_{amb} = -40 \hdots \end{tabular} 75 \end{tabular}^{C} \\ \end{tabular} XP-IS (US) CL I/DIV I/GP BCD, DIP CL II, III/DIV I/GP EFG \\ \end{tabular} XP-IS (Kanada) CL I/DIV I/GP BCD, DIP CL II, III/ DIV I/GP EFG \\ \end{tabular} CL I, ZONE 1, AEx/Ex d ia IIC T6 -40 \end{tabular}^{C} < Ta < +75 \end{tabular}^{C} \\ \end{tabular} TYPE 4X Tamb = 75 \end{tabular}^{C} \end{tabular} \end{tabular}$

Special Requirements

The devices must be installed in a protected environment in accordance with the specific conditions on the test certificate. Pollution degree 3 (see IEC 60664-1) must not be exceeded for the macro environment of the device.

The devices are in accordance with the IP rating IP66 / IP67. If the device is installed correctly, this requirement is met by the housing as standard.

When connected to the power supply / not connected to the power supply, the electrical circuits must not exceed overvoltage category III / II.

Temperature resistance for the connecting cables

The temperature at the cable entries of the device is dependent on the measuring medium temperature $\rm T_{medium}$ and the ambient temperature $\rm T_{amb.}.$

For electrical connection of the device, cables suitable for temperatures up to 110 $^\circ\text{C}$ (230 $^\circ\text{F})$ can be used without restriction.

Use in category 2 / 3G

For cables suitable only for temperatures up to 80 °C (176 °F), the connection of both circuits must be checked in the event of a fault. Otherwise, the restricted temperature ranges listed in the following table shall apply.

Use in category 2D

For cables suitable only for temperatures up to 80 $^{\circ}$ C (176 $^{\circ}$ F), the restricted temperature ranges listed in the following table shall apply.

T _{amb} ¹⁾	T _{medium} maximum	Maximum cable temperature
40 82 °C	180 °C (356 °F)	110 °C (230 °F)
(-40 180 °F)2)		
-40 40 °C	272 °C (522 °F)	80 °C (176 °F)
(-40 104 °F)2)		
-40 40 °C	400 °C (752 °F)	
(-40 104 °F)		
-40 67 °C	180 °C (356 °F)	
(-40 153 °F)		

1) The permissible limits for the ambient temperature are dependent on approval and design (default: -20 °C [-4 °F])

2) Category 2D (dust-ignition proof), maximum 60 °C (140 °F)

Electrical connections

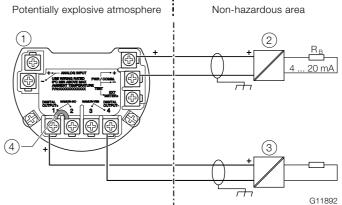


Fig. 25: Electrical connection (example)

(1) SwirlMaster FSS430, FSS450 (2) Supply isolator

(3) Switching amplifier (4) Bridge

Output configuration	Bridge
Optoelectronic coupler output	1-2
NAMUR output	3-4

Terminal	Function
PWR/COMM + /	Power supply / current output / HART output
PWR/COMM -	
DIGITAL OUTPUT+ /	Digital output as optoelectronic coupler or
DIGITAL OUTPUT-	NAMUR output

In the factory setting, the output is configured as an optoelectronic coupler output.

If the digital output is configured as a NAMUR output, a suitable NAMUR switching amplifier must be connected.

Ordering Information

Main ordering information SwirlMaster FSS430, FSS450

Base model							
SwirlMaster FSS430 Swirl Flowmeter	FSS430 XX	XX	XXXXXX	XX	XX	XX	XX
SwirlMaster FSS450 Intelligent Swirl Flowmeter	FSS450 XX	xx	XXXXXX	XX	XX	XX	XX
Explosion Protection Certification					Con	tinued	see
Without	YO				ne	ext pag	ge
ATEX Ex nA / Ex tc (Zone 2 and 22)	B1						
ATEX Ex ia / Ex ia (Zone 0 and 20)	A4						
ATEX Ex d ia / Ex tb (Zone 0/1 and 21)	A9						
IECEx Ex nA / Ex tc (Zone 2 and 22)	N1						
IECEx Ex ia / Ex ia (Zone 0 and 20)	N2						
IECEx Ex d ia / Ex tb (Zone 0/1 and 21)	N3						
cFMus XP CI I,II,III Div 1 / Zone 1	F1						
cFMus IS CI I,II,III Div 1 / Zone 0	F4						
cFMus NI CI I Div 2, CI II,III Div 1,2 / Zone 2	F3						
System Design							
Integral single sensor		C1					
Remote single sensor, 5 m (16 ft) signal cable included	(R1					
Integral dual sensor		C2					
Remote dual sensor, 2 x 5 m (16 ft) signal cable included		R2					
Process Connection Type / Meter Size / Connection Size							
Flange / DN 15 (1/2 in.) / DN 15 (1/2 in.)			F015R0				
Flange / DN 20 (3/4 in.) / DN 20 (3/4 in.)			F020R0				
Flange / DN 25 (1 in.) / DN 25 (1 in.)			F025R0				
Flange / DN 32 (1-1/4 in.) / DN 32 (1-1/4 in.)			F032R0				
Flange / DN 40 (1-1/2 in.) / DN 40 (1-1/2 in.)			F040R0				
Flange / DN 50 (2 in.) / DN 50 (2 in.)			F050R0				
Flange / DN 80 (3 in.) / DN 80 (3 in.)			F080R0				
Flange / DN 100 (4 in.) / DN 100 (4 in.)			F100R0				
Flange / DN 150 (6 in.) / DN 150 (6 in.)			F150R0				
Flange / DN 200 (8 in.) / DN 200 (8 in.)			F200R0				
Flange / DN 300 (12 in.) / DN 300 (12 in.)			F300R0				
Flange / DN 400 (16 in.) / DN 400 (16 in.)			F400R0				
Pressure Rating							
PN 10				D1			
PN 16				D2			
PN 25				D3			
PN 40				D4			
PN 63				D5			
PN 100				D6			
PN 160				D7			
ASME CL 150				A1			
ASME CL 300				A3			
ASME CL 600				A6			
ASME CL 900				A7			
Others				Z9			
				78			

Main ordering information		
SwirlMaster FSS430 Swirl Flowmeter	XX XX	XX
SwirlMaster FSS450 Intelligent Swirl Flowmeter	XX XX	xx
Temperature Range of Measuring Medium		
Standard -55 280 °C (-67 536 °F)	(A1)	
Housing Material / Cable Glands)	
Aluminium / 2 pcs. metric, M20 x 1.5, cable glands mounted	A1	
Aluminium / 2 pcs. 1/2 in. NPT threads, cable glands not included	(B1)	
Stainless steel 316L / 2 pcs. metric, M20 x 1.5, cable glands mounted	S1	
Stainless steel 316L / 2 pcs. 1/2 in. NPT threads, cable glands not included	T1	
Output Signal		
HART digital communication and 4 20 mA	1)	H1
HART digital communication, 4 20 mA + digital contact output	(H5

Additional ordering information

SwirlMaster FSS430 Swirl Flowmeter		XX	XXX	XXX	XXX	XX	XX	XXX
SwirlMaster FSS450 Intelligent Swirl Flowmeter		xx	xxx	XXX	XXX	xx	XX	xxx
Integrated Digital Display (LCD)								
With Integrated LCD Display with Push Buttons TTG	1)	(L2)						
Piezo Sensor Sealing Material		\smile						
PTFE (-20 260 °C / -4 500 °F)		2)	(SPO)					
Kalrez 6375 (-20 275 °C / -4 527 °F)		3)	SP1					
Graphite (-55 280 °C / -67 536 °F)		4)	SP2					
Ambient Temperature Range								
Extended -40 85 °C (-40 185 °F)				TA4				
Signal Cable Length					\frown			
10 m (approx. 32 ft)				5)	(SC2)			
20 m (approx. 64 ft)				5)	SC4			
30 m (approx. 96 ft)				5)	SC6			
Others				5)	SCZ			
Calibration Type Standard Three Point Calibration								
5-point calibration	_					R5		
3-point calibration including application-specific k-factor to Reynolds number optimizatio	n				6)	RR		
Surge / Transient Protector								
With integral surge / transient protector						1)	S1	
Sensor Material								
Piezo sensor material Hastelloy C-276								SM1
All inner parts material Hastelloy C-276								SM2
All wetted parts material Hastelloy C-276								SM3

Additional ordering information						
SwirlMaster FSS430 Swirl Flowmeter	XX	XXX	XX	XX	XX	XX
SwirlMaster FSS450 Intelligent Swirl Flowmeter	XX	XXX	XX	XX	XX	XX
Certificates						
Material monitoring with inspection certificate 3.1 acc. EN 10204	C2					
Material monitoring NACE MR 01-75 with inspection certificate 3.1 acc. EN 10204	CN					
Declaration of compliance with the order 2.1 acc. EN 10204	C4					
Inspection certificate 3.1 acc. EN 10204 of visual, dimensional and functional test	C6					
Inspection certificate 3.1 acc. EN 10204 of positive material identification PMI with material analysis	C5					
Inspection certificate 3.1 acc. EN 10204 of positive material identification PMI	CA					
Pressure test acc. to factory test plan	CB					
Test package (pressure test, non-destructive test, welder an welding procedure certificate)	CT					
Device Identification Plate		\frown				
Stainless steel plate with TAG no.	(TC1				
Adhesive label with TAG no.		TCC				
Supplemental wired-on stainless steel plate		TCS				
Others		TCZ				
Documentation Language						
German			M1			
English		(M5)		
Chinese			M6			
Russian			MB			
Language package Western Europe / Scandinavia			MW			
Language package Eastern Europe			ME			
Special Applications						
Degreased for oxygen applications				P1		
Hardware Options					\sim	
Integral RTD				1)	(G1)	
Operation Mode					\smile	
Steam Mass #/ft. 3					6)	NS2
Water energy flow					6)	N2
Natural gas flow AGA / SGERG					6)	N3

Optional with SwirlMaster FSS430, standard with SwirlMaster FSS450
 Application range -20 ... 260 °C / -4 ... 500 °F
 Application range -20 ... 275 °C / -4 ... 527 °F
 Application range -55 ... 280 °C / -67 ... 536 °F
 For remote sensor only
 Only available with SwirlMaster FSS450

Main ordering information FST450 Transmitter for SwirlMaster FSS430, FSS450

Base model					
FST450 Transmitter	FST450	XX	XX	XX	XX
Explosion Protection Certification					
Without		Y0			
System Design					
FST450 transmitter kit 1; spare transmitter for FSS430 / FSS450			K1		
FST450 transmitter kit 2 for conversion of integral mount design to remote mount design			K2		
FST450 transmitter kit 3 for conversion of FS4000-ST4 to FSS450 integral mount design			K3		
FST450 transmitter kit 4 for conversion of FS4000-ST4 / SR4 to FSS450 remote mount design					
FST450 transmitter kit 5 for conversion of 10ST1000 to FSS450 integral mount design			K5		
FST450 transmitter kit 6 for conversion of 10ST1000 / 10SR1000 / 10SM1000 to FSS450 remote mount desig	In		K6		
Housing Material / Cable Glands					
Aluminium / 2 pcs. metric, M20 x 1.5, cable glands mounted				A1	
Aluminium / 2 pcs. 1/2 in. NPT threads, cable glands not included				B1	
Stainless steel 316L / 2 pcs. metric, M20 x 1.5, cable glands mounted				S1	
Stainless steel 316L / 2 pcs. 1/2 in. NPT threads, cable glands not included				T1	
Others				Z9	
Output Signal					
HART digital communication, 4 20 mA + digital contact output					H5

Additional ordering information

FST450 Transmitter	XX	XXX	XXX	XXX
Integrated Digital Display (LCD)				
With Integrated LCD Display with Push Buttons TTG	L2			
Piezo Sensor Design				
Standard temperature, Pt100, PED design (-55 280 °C / -67 536 °F)	1)	SD1		
Standard temperature, Pt100, non PED (-55 280 °C / -67 536 °F)	2)	SD3		
Piezo Sensor Sealing Material				
PTFE (-20 260 °C / -4 500 °F)		3)	SP0	
Kalrez 6375 (-20 275 °C / -4 527 °F)		4)	SP1	
Graphite (-55 400 °C / -67 752 °F)		5)	SP2	
Signal Cable Length				
10 m (approx. 32 ft) (For remote sensor only)			12)	SC2
20 m (approx. 64 ft) (For remote sensor only)			12)	SC4
30 m (approx. 96 ft) (For remote sensor only)			12)	SC6
Others (For remote sensor only)			12)	SCZ

Additional ordering information						
FST450 Transmitter	 XX	XX	XXX	XX	XX	XX
Surge / Transient Protector						
With integral surge / transient protector	S1					
Certificates						
Declaration of compliance with the order 2.1 acc. EN 10204		C4				
Device Identification Plate						
Stainless steel plate with TAG no.			TC1			
Adhesive label with TAG no.			TCC			
Supplemental wired-on stainless steel plate			TCS			
Others			TCZ			
Documentation Language						
German				M1		
English				M5		
Chinese				M6		
Russian				MB		
Language package Western Europe / Scandinavia				MW		
Language package Eastern Europe				ME		
Hardware Options						
Integral RTD					G1	
Analog input					G2	
HART Input					G3	
Operation Mode						
Steam energy flow						N1
Water energy flow						N2
Natural gas flow AGA / SGERG						N3

For VT4/ST4 delivered after 05/2002, 6 hole design
 For VT4/ST4 delivered before 05/2002 and all VT1000 / ST1000, 4 hole design

3) Application range -20 ... 260 °C / -4 ... 500 °F

4) Application range -20 ... 275 °C / -4 ... 527 °F

5) Application range -55 ... 400 °C / -67 ... 752 °F

6) For remote sensor only

Trademarks

® HART is a registered trademark of FieldComm Group, Austin, Texas, USA

® Kalrez and Kalrez SpectrumTM are registered trademarks of DuPont Performance Elastomers.

™ Hastelloy C is a trademark of Haynes International

Questionnaire

Customer:		Date:						
Ms. / Mr.:		Department:						
Telephone:		Fax:						
Measuring system:	SwirlMaster FSS430	Optional						
		Integrated resistance thermometer Pt100						
		Digital output (s						
	SwirlMaster FSS450	(with integrated res	sistance thermome [.]	ter Pt100, digital o	utput, and analog input)			
Measuring medium:		Liquid	Gas	□ Steam				
(Aggregate state)								
Flow rate:		Operating	Standard	Mass	Energy			
(min., max., operating point)		condition	condition	□ kg/h	□ kW			
(, , , , , , , , , , , , , , , , , , ,		□ m ³ /h	□ m ³ /h	□ lb/h	□ MJ/h			
		US gal/min	☐ ft ³ /h					
Density:		kg/m ³	Operating cor	ndition				
(min., max., operating point)		□ lb/ft ³	□ Standard con					
Viscosity:		mPas/cP						
		□ cst						
Measuring medium temperature:		□ °C						
(min., max., operating point)		□°F						
Ambient temperature:		□ °C						
		□°F						
Pressure:		🗌 bar						
(min., max., operating point)		🗌 psi						
Nominal diameter/pressure rating		🗆 DN						
of the piping:		🗆 PN						
Effective internal diameter of the		🗆 mm						
piping:								
[_	_						
Transmitter design /	☐ 4 20 mA, HART (two-wire	PROFIBUS PA		LI FOUNDATIO	ON Fieldbus (two-wire			

Transmitter design /	LI 4 20 mA, HART (two-wire LI PROFIBUS PA		FOUNDATION Fieldbus (two-wire)
communication:	technology)	(Two-wire technology)	technology)
Explosion protection:	Without		
	□ Zones 2, 22 / Cl. 1, Div. 2		
	□ Zones 0, 1, 20, 21 / Div. 1 (Ex ia / IS)		
	Zone 0, 1, 20, 21 / Div. 1 (Ex c	1 / XP)	

Notes

Contact us

ABB Limited Process Automation

Howard Road, St. Neots Cambridgeshire, PE19 8EU UK Tel: +44 (0) 870 600 6122 Fax: +44 (0)1480 213 339 Mail: enquiries.mp.uk@gb.abb.com

ABB Inc.

Process Automation

125 E. County Line Road Warminster PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

ABB Automation Products GmbH

Process Automation

Dransfelder Str. 2 37079 Goettingen Germany Tel: +49 551 905-0 Fax: +49 551 905-777

ABB Engineering (Shanghai) Ltd. Process Automation

No. 4528, Kangxin Highway, Pudong New District, Shanghai, 201319, P.R. China Tel: +86(0) 21 6105 6666 Fax: +86(0) 21 6105 6677 Mail: china.instrumentation@cn.abb.com

www.abb.com/flow

Note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB.

Copyright© 2015 ABB All rights reserved

3KXF320001R1001

Service

Appendix C - Site Photos

Gas turbine

Heat Recovery Steam Generator (HRSG)

Gas Compressor Enclosure (next to gas turbine skid)

Turbine Gas Meter (FGT)

Duct Burner Gas Meter (FGDB)

Steam Flow Meter (FS)

Steam Flowmeter Display (FS)


HRSG Feedwater Flow Meter (FFW)

Steam to Chiller Flange (meter not yet installed) (FSCH)

High Pressure Deaerator Steam Flow Meter (FSDAHP)

Chilled Water Flow Meter

Turbine Gross Output (WT)

MCC4 Parasitic Load Meter - Typ. (WP3)