MEASUREMENT AND VERIFICATION PLAN

FOR

DG/CHP SYSTEM AT BREVOORT EAST

As-Built April 2015

Submitted to:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, NY 12203-6399

Submitted by:

CDH Energy Corp.

PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 (315) 655-1063 www.cdhenergy.com

Project Team:

NYSERDA Project Manager:

Scott Larsen lsl@nyserda.org

Developer/Site Contact:

Joseph E. Gehret Tecogen, Inc. 45 First Avenue Waltham, MA 02451 Joseph.E.Gehret@tecogen.com T: 781.466.6482 F: 781.466.6466 C: 617.803.6141

Site:

Brevoort East 20 East 9th St. New York, NY 10003

NYSERDA M&V Contractor:

Hugh Henderson Pilar Lyons CDH Energy PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 hugh@cdhenergy.com pilar@cdhenergy.com Tel: 315-655-1063 (Hugh, ext. 13, Pilar, ext. 25)

1. Introduction

DSM Engineering Associates (DSMEA) designed and oversaw the installation of a combined heat and power (CHP) system at Brevoort East at 20 East 9th St. in New York. The site is receiving an incentive from NYSERDA under the CHP Demonstration program.

The proposed CHP system includes two (3) 100 kW Tecogen InVerde INV-100 engine generator units. Originally two (2) of the engine-generator units received an incentive from NYSERDA under the CHP Demonstration program. The inverter-based systems are intended to produce a gross output of 300 kW and recover jacket water engine heat for 1.) pre-heating the space heating hot water loop, 2.) an 80-ton hot-water absorption chiller, and 3.) DHW preheating. The CHP system will provide power in parallel with the existing utility service.

2. Instrumentation

In order to quantify the performance of the CHP system, the CHP system fuel input, net electrical output, and useful thermal output will be measured. To capture that data, the Site (or its monitoring contractor) supplied the meters and instrumentation listed in Table 1 on page 2.

Data Logger

Readings for the installed instrumentation are recorded by an Obvius AcquiSuite datalogger provided and installed by CDH Energy. The datalogger samples all sensors approximately once per second and records one-minute totals (for pulse or digital sensors) or averages (for analog sensors). The one minute readings of heat recovery temperatures and flow rates will be used to provide an accurate calculation of heat transfer on the heat recovery loops, which are all continuous flow loops.

Based on the number of monitored data points (12), the logger will have sufficient memory to store 30-days of data if communications with the logger are interrupted. The data will be downloaded from the datalogger once per day via an Internet connection provided by the Site. The data will be loaded into a database, checked for validity, and posted on the NYSERDA web site.

Onsite Installation

CDH Energy installed a datalogger panel at a location in the cogeneration room agreeable to the site and developer. The monitoring system panel is approximately 2 ft x 2 ft x 1 ft. The panel is supplied with 120 VAC power (it requires 1 amp or less). The panel is conveniently located relative to the sensors listed above as well as the communications line provided by the site.

Communications

The datalogger has a connection to the Internet. A dedicated static IP address has been supplied. The logger uploads data every night to the CDH Energy servers.

On Site Support

The facility has assisted in providing a network connection for the datalogger. The site will be responsible for providing access to all areas necessary to complete the monitoring installation, as well as any access for return trips to verify sensors or service the monitoring system.

	Tecogen	•	(Output		
Data Point	Label	Description	Units	Instrument / Sensor	Туре	Location	Note
WGNet		Net Generator Output	kWh/ kW	Veris 8100 Series Energy Meter	Pulse	Cogen Distribution Panel	
WG1	CHP1	CHP Unit 1 Electrical Output	kW	Tecogen Inverde Sensor	MODBUS RTU	Tecogen generator MODBUS output	
WG2	CHP2	CHP Unit 2 Electrical Output	kW	Tecogen Inverde Sensor	MODBUS RTU	Tecogen generator MODBUS output	
WG3	CHP3	CHP Unit 3 Electrical Output	kW	Tecogen Inverde Sensor	MODBUS RTU	Tecogen generator MODBUS output	
WT		Building Imported Power (WT)	kW	Unknown Sensor	MODBUS RTU	Tecogen generator MODBUS output	MODBUS register TBD. Datapoint named Empty1 in CDH database.
FG		Combined Generator Fuel Input	CF	Utility Meter	Pulse	In gas meter room	Accumulator integrated to gas use. Pulse output not yet installed.
FL	F-CHPHW	Heat Recovery Loop Flow Rate (60 GPM through 3" S40 supply piping from Tecogen)	GPM	Onicon System-10 Flow Meter F3500 SN: 273369	MODBUS RTU	On main heat recovery loop downstream of generator, upstream of pumps	
TLS	BTUTS-1	Heat Recovery Loop Supply Temperature	deg F	Onicon System-10 Thermistor Calibrated 122 F - 300 F	MODBUS RTU	On main heat recovery loop downstream of generator	
TLR3	BTUTS-2	Heat Recovery Loop Return Temperature from HX-DHW	deg F	Onicon System-10 Thermistor Calibrated 122 F - 300 F	MODBUS RTU	On main heat recovery loop downstream of HX-DHW	
TLS_Alt	CHP1-TS3	Alt: Heat Recovery Loop Supply Temperature	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of generator	TLS_Alt equated to datapoint named G3T4 (TS3-3) in CDH database.
TLR2	CHP1-TS2	Diagnostic - Heat Recovery Loop Return Temperature from Abs Chiller	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of Abs Chiller	TLR2 equated to datapoint named G2T3 (TS2- 2) in CDH database.
TLR3_Alt	CHP1-TS3	Alt: Heat Recovery Loop Return Temperature from HX- DHW	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of HX-DHW	TLR3_Alt equated to datapoint named G1T4 (TS1-3) in CDH database.
TLR4	CHP1-TS5	Diagnostic - Heat Recovery Loop Return Temperature from HX-CHPHBR	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of HX-CHPHBR	TLR4 equated to datapoint named G3T6 (TS3- 5) in CDH database.
FL2	F-CHPABS	Diagnostic - Chiller Heat Recovery Sub-Loop Flow Rate	GPM	Onicon System-10 Flow Meter F350	MODBUS RTU	On chiller heat recovery loop upstream of pump	
THCHS	CHP1-TS1	Diagnostic - Chiller Heat Recovery Sub-Loop Supply Temperature to Absorption Chiller	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On chiller heat recovery loop upstream of chiller	TCH1 equated to datapoint named G1T2 (TS1 1) in CDH database.
THCHR	CHP1-TS4	Diagnostic - Chiller Heat Recovery Sub-Loop Return Temperature from Absorption Chiller	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On chiller heat recovery loop downstream from chiller	TCH2 equated to datapoint named G2T5 (TS2 4) in CDH database.
G1T2 - G3T8	CHP1-TS1 - CHP3-TS7	Generator Client Temperatures (7 per generator)	deg F	Unknown Thermistors	MODBUS RTU (Analog)		Datapoint names in database offset from Tecogen Labels based on MODBUS register.
TAO		Ambient Temperature (Data Integrator Value)	deg F	NWS Station		LGA	

 Table 1. Overview of CHP System Monitoring Instrumentation

3. Data Analysis

The collected data listed in Table 1 on page 2 will be used to determine the net power output of the system as well as the fuel conversion efficiency (FCE).

Peak Demand or Peak kW

The peak electric output or demand for each power reading will be taken as the average kW in a fixed 15-minute interval (0:00, 0:15, 0:30, etc.), defined as:

$$kW = \frac{\sum_{15 min} kWh}{\Delta t} = \frac{kWh \ per \ interval}{0.25h}$$

<u>Net Power Output</u>

The power meter on the cogeneration distribution panel directly measures net generator power output (WGNet). The generator meters will measure the individual gross output of the three engine generators as a check. The parasitic power (WPAR) can be determined by subtracting the net generator power output (WGNet) from the total of the three individual generator power measurements (WG1, WG2, WG3).

WPAR = (WG1 + WG2 + WG3) - WGNet

Heat Recovery Rates

The heat recovery rates will be calculated based on the one-minute data collected. The piping arrangement at this site allows for multiple heat rates to be determined with four (4) temperature sensors and one flow reading on the heat recovery loop:

The rate of useful glycol loop heat recovery in Btu/h is defined as:

$$QU = K \times \frac{\sum_{n} [FL \times (TLS - TLR3)]}{n}$$

The rate of rejected (unused) heat recovery in Btu/h is defined as:

$$QD = K \times \frac{\sum_{n} [FL \times (TLR3 - TLR4)]}{n}$$

where:

K = ~ 500 Btu/h-gpm-°F for pure water; ~480 Btu/h-gpm-°F for 20% glycol n = Number of 1-minute intervals included in period of interest

The heat recovery loop fluid is expected to be pure water. The factor K will be determined based on a periodic reading of the fluid properties with a refractometer to determine the glycol concentration as well as the operating temperature.

Any heat recovery measurement can be calculated for an interval sum (Btu) by the following:

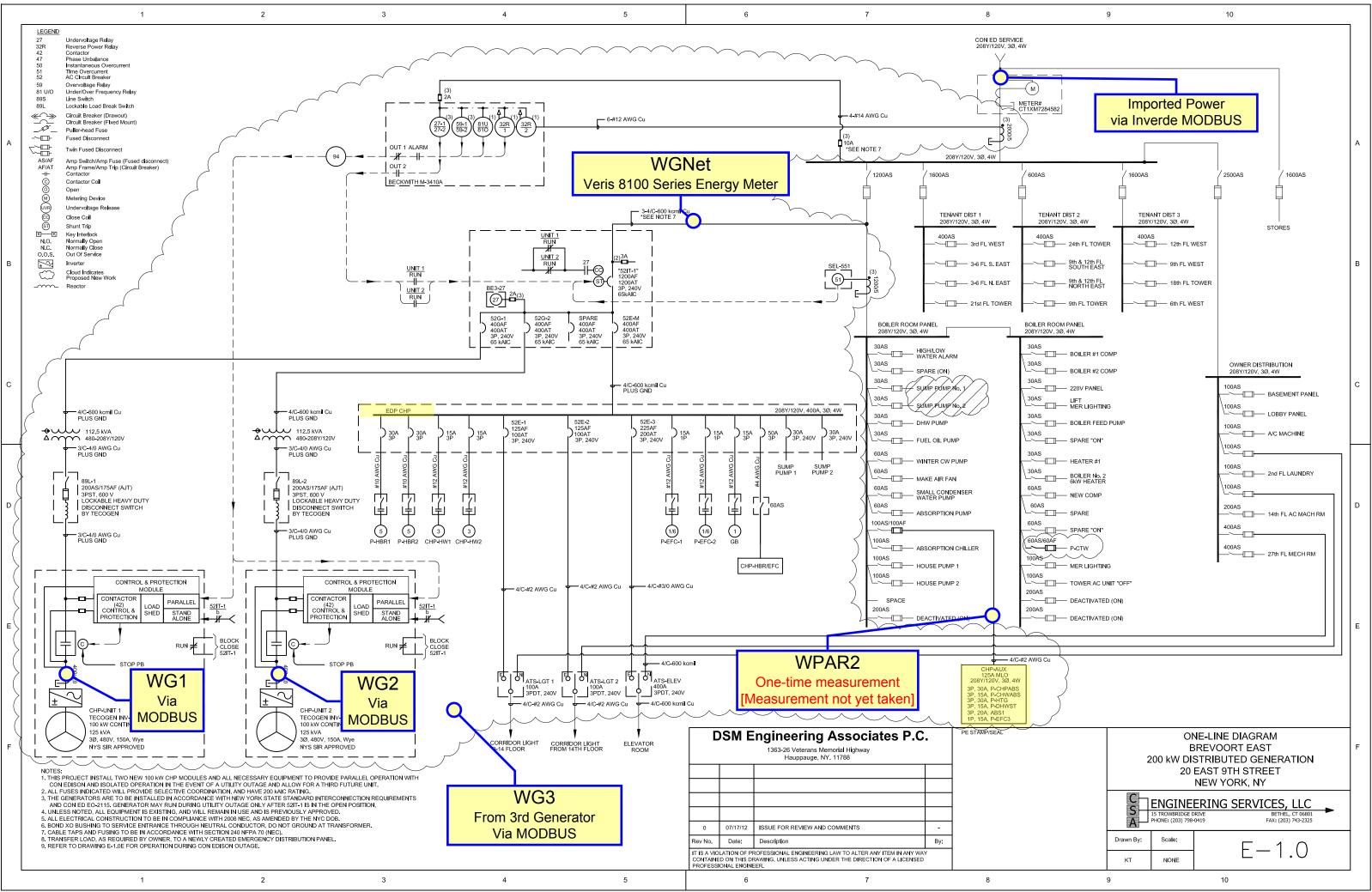
$$Q_{int} = \sum_{N} Q \cdot \Delta t$$

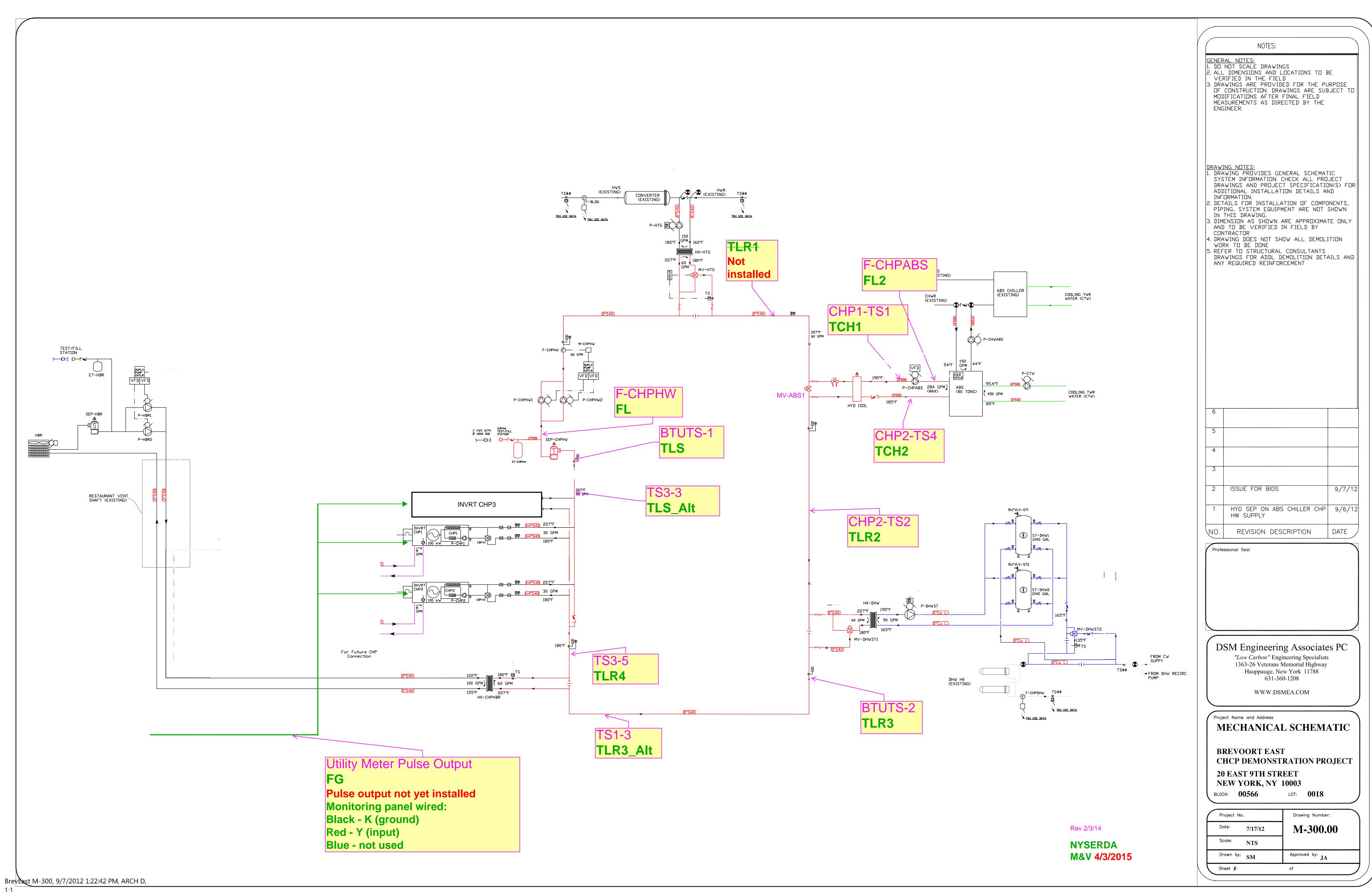
where: N = Number of intervals in in period of interest
 Δt = interval duration (hrs.)

In addition to the useful heat recovery and the dumped heat, the heat recovered for the specific loads can also be calculated using the equations above with different temperatures:

Heating Load	Temperature Difference
Heat to either space heating (via HX- HTG) or hot-water absorption chiller	TLS – TLR2
Heat to DHW loop	TLR2 – TLR3

Calculated Quantities


The fuel conversion efficiency of the CHP system, based on the lower heating value of the fuel, will be defined as:


$FCE = \frac{QU_{int} + 3413 \times (WGNet)}{0.9 \times HHV_{gas} \times FG}$					
where:	$\begin{array}{ll} QU_{int} &= \\ WG_{net} &= \\ FG &= \\ HHV_{gas} &= \end{array}$	Useful heat recovery (Btu) (QU) Engine generator net output (kWh) Generator gas consumption (Std CF) Higher heating value for natural gas (~1030 Btu/CF)			
	IIII v gas —	Where 0.9 is the conversion factor between HHV and LHV			

The FCE can be calculated for any time interval of interest (hourly, daily, monthly, etc.), depending on the resolution available for the gas meter reading.

Appendix A

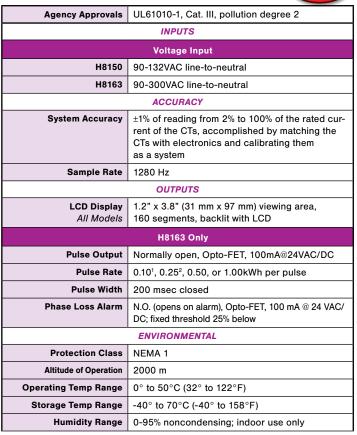
System Schematic and Cut Sheets for Key Sensors and Instruments

1:1

Energy Meters

H81xx Series

Sub-Tenant Meter with Calibrated CTs for Superior System Accuracy


FEATURES

- Revenue Grade measurements
- High resolution backlit LCD display provides clear readings at a distance...reduces the risk of misinterpretation of the data. Backlighting can be disabled if desired
- H8163 provides a pulse output from 1/10 to 1 pulse per kWh for easy connection to existing control or data acquisition systems
- Provides a phase-loss alarm...protects equipment (H8163)
- With the optional communications board (H81xx-CB), the H81xx can easily be added to a Modbus, BACnet or N2 control system network to report multiple variables including kW, kWh, kVAR, PF, Amps and Volts, providing crucial power information at a reduced installation cost

APPLICATIONS

- Commercial tenant submetering
- Performance contracting
- Allocating costs
- Real-time power monitoring via local display or through control/data acquisition systems

SPECIFICATIONS

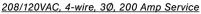
Approved for California CSI Solar applications (check the CSI website for model numbers). 1. not supported at >1600A

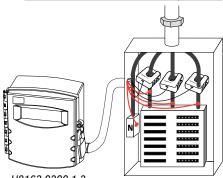
2. not supported at >2400A

Note: Meter and CTs serial numbers must match, except for 100A CTs. Neutral voltage connection is required.

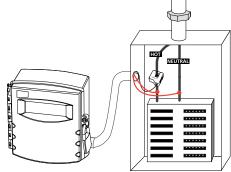
DESCRIPTION

The **H81xx Series Energy Meters** are easy to install & provide exceptional system accuracy, making them ideal for all submetering applications.


Each meter is factory-matched with one to three split-core CTs. The meter/CT pairs are system-calibrated to provide excellent total system accuracies of 1% from 2% to 100% of the amperage rating of the CTs (e.g., 2-100 amps with 100 amp CTs).Matching serial numbers assure that the meter and CT were calibrated together (matching does not apply if using 100A CTs).

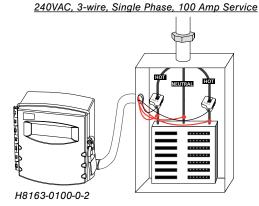

The H81xx is easy to install. The split-core CTs virtually eliminate the need to remove electrical conductors, reducing installation time. The meter is also capable of detecting and correcting phase reversal, eliminating the need for concern about CT load orientation. The convenient color coding of the CTs and voltage leads make correct connection simple.

🗖 Year

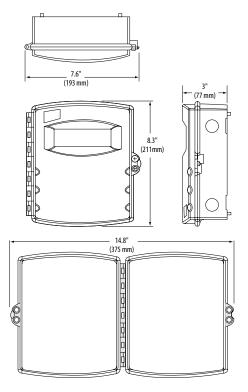

WIRING DIAGRAMS

H8163-0200-1-3

120VAC, 2-wire, Single Phase, 100 Amp Service


H8163-0100-0-1

DATA OUTPUTS


kWh. Consumption kW, Real power kVAR, Reactive power kVA, Apparent power Power factor Voltage, line to line Voltage, line to neutral Amps, Average current kW, Real Power ØA kW, Real Power ØB kW. Real Power ØC Power factor ØA Power factor ØB Power factor ØC

c (U) us

Voltage, ØA to ØB Voltage, ØB to ØC Voltage, ØA to ØC Voltage, ØA to Neutral Voltage, ØB to Neutral Voltage, ØC to Neutral Amps, Current ØA Amps, Current ØB Amps, Current ØC Deman d kW and kVAR * Peak Demand * Time Stamp * * with H8163-CB communications board installed

DIMENSIONAL DRAWINGS

ORDERING INFORMATION

LISTED	<u>120VAC-240VAC (nom.)</u>					
Amps	One CT	Two CTs	Three CTs	Voltage	Output	
100 Micro	H8150-0100 0-1	H8150-0100-0-2	H8150-0100-0-3			
200 Mini	H8150-0200-1-1	H8150-0200-1-2	H8150-0200-1-3			
300 Small	H8150-0300-2-1	H8150-0300-2-2	H8150-0300-2-3	1		
400 Med		H8150-0400-3-2	H8150-0400-3-3		Display	
800 Med		H8150-0800-3-2	H8150-0800-3-3	120VAC L-N	Only	
800 Lg			H8150-0800-4-3	3		
1600 Lg			H8150-01600-4-3			
2400 Lg			H8150-2400-4-3			

120VAC-480VAC (nom.) with Pulse and Phase Loss Outputs

Amps	One CT	Two CTs	Three CTs	Voltage	Output
100 Micro	H8163-0100-0-1	H8163-0100-0-2	H8163-0100-0-3		
200 Mini	H8163-0200-1-1	H8163-0200-1-2	H8163-0200-1-3		
300 Small	H8163-0300-2-1	H8163-0300-2-2	H8163-0300-2-3		
400 Med		H8163-0400-3-2	H8163-0400-3-3	120-	Pulse & Phase
800 Med		H8163-0800-3-2	H8163-0800-3-3	480VAC	Loss
800 Lg			H8163-0800-4-3		
1600 Lg			H8163-01600-4-3		
2400 Lg			H8163-2400-4-3		

ACCESSORIES

Fuse and Fuseholders (AH02, AH03, AH04) Comms board (H81xx-CB) Modbus TCP Gateway (U013-0012) BACnet IP Router (U013-0013)

U013-0015

HQ0001813.D 0115

800.354.8556

+1 503.598.4564

www.veris.com

• SYSTEM-10-MOD BTU METER • MODBUS RTU RS485 or MODBUS TCP/IP COMPATIBLE

FEATURES

MODBUS Compatible Serial Communications -

Provides complete energy, flow and temperature data to the control system through a single MODBUS RTU network connection, reducing installation costs.

- **Simple Installation and Commissioning -** Factory programmed and ready for use upon delivery. All process data and programming functions are accessible via front panel display and keypad.
- **Single Source Responsibility -** One manufacturer is responsible for every aspect of the energy measurement process ensuring component compatibility and overall system accuracy.
- **N.I.S.T. Traceable Calibration with Certification** -Each Btu measurement system is individually calibrated using application specific flow and temperature data and is provided with calibration certificates.
- Precision Solid State Temperature Sensors Custom calibrated and matched to an accuracy better than $\pm 0.15^{\circ}F$ over calibrated range.

Highly Accurate Flow Meters - ONICON offers a wide variety of insertion and inline type flow measurement technologies including turbine, electromagnetic and vortex sensing. Each type offers unique advantages depending on the application. All ONICON flow meters are individually wet calibrated and designed to operate over a wide flow velocity range with accuracies ranging from $\pm 0.2\%$ to $\pm 2.0\%$ of rate depending on the model.

Complete Installation Package - All mechanical installation hardware, color coded interconnecting cabling and installation instructions are provided to ensure error-free installation and accurate system performance.

DESCRIPTION

The System-10 BTU Meter provides highly accurate thermal energy measurement in chilled water, hot water and condenser water systems based on signal inputs from two matched temperature sensors (included) and any of ONICON's insertion or inline flow meters (ordered separately). The System-10-MOD provides energy, flow and temperature data on a local alphanumeric display and to the network via the MODBUS RTU RS485 or MODBUS TCP/IP communications adapter. An optional auxiliary input is also available to totalize pulses from another device and communicate the total directly to the network.

APPLICATIONS

Chilled water, hot water and condenser water systems for:

- Commercial office tenant billing
- Central plant monitoring
- University campus monitoring
- Institutional energy cost allocation
- Performance/efficiency evaluations
- Performance contracting energy monitoring

ORDERING INFORMATION

The System-10 BTU Meter is sold complete with temperature sensors. Thermowell installation kits and flow meters are purchased separately.

ITEM #	DESCRIPTION					
SYSTEM-10-MOD	System-10 BTU Meter, MODBUS Compatible					
SYSTEM-10-OPT8	High temperature sensors (over 200°F)					
SYSTEM-10-OPT9	Add one analog output					
SYSTEM-10-OPT10	Add four analog outputs					
	Choose from the following commonly used thermowell installation kits:					
SYSTEM-10-OPT4	Upgrade to outdoor thermowells (pair)					
BTU-ST-INSTL32	Brass kit for welded steel pipe (3/4" - 5")					
BTU-ST-INSTL52	Brass kit for threaded steel pipe $(\frac{3}{4}" - 2\frac{1}{2}")$					
BTU-ST-INSTL34	SS kit for welded steel pipe (¾" and up)					
BTU-ST-INSTL36	Brass kit for copper tube (¾" - 2")					
BTU-ST-INSTL37	Brass kit for copper tube (21/2" - 3")					
Choose from the following flow meters:						
F-1100/F-1200 Insertion Turbine Flow Meter (1¼" - 72")						
F-1300	Inline Turbine Flow Meter (3/4" - 1")					
F-3000 Series	Inline Electromagnetic Flow Meter (1/4" - 48")					
F-3500	Insertion Electromagnetic Flow Meter (3"- 72")					
F-4200	Clamp-on Ultrasonic Flow Meter (1/2" - 48")					
F-2000 Series	Inline Vortex Flow Meter (1/2" - 12")					
Refer to catalog for flow meter installation kits. Consult with ONICON for additional thermowell installation kit and flow meter options.						

11451 Belcher Road South, Largo, FL 33773 • USA • Tel +1 (727) 447-6140 • Fax (727) 442-5699 www.onicon.com • sales@onicon.com

SYSTEM-10-MOD BTU METER SPECIFICATIONS

CALIBRATION

Flow meters and temperature sensors are individually calibrated followed by a complete system calibration. Field commissioning is also available.

ACCURACY

Differential temperature accuracy ±0.15°F over calibrated range Computing nonlinearity within ±0.05% TEMPERATURE SENSORS Solid state sensors are cus

PROGRAMMING

Factory programmed for specific application Field programmable via front panel interface

MEMORY

Non-volatile EEPROM memory retains all program parameters and totalized values in the event of power loss.

DISPLAY

Alphanumeric LCD displays total energy, total flow, energy rate, flow rate, supply temp. and return temp.

Alpha: 16 character, 0.2" high; Numeric: 8 digit, 0.4" high **OUTPUT SIGNALS**

Network Interface:

Protocol: MODBUS RTU

Connection: RS485: 2-wire (half duplex) TCP/IP: 10 Base T, 10 Mbps, RJ45 Connection

Baud Rate for RS485: 9600, 19200, 38400, 57600 and 115200 **Partial MODBUS Holding Register List:**

NAME	Available Units
Total Energy	Btu, kW-hrs & ton-hrs
Energy Rate	Btu/hr, kW & tons
Total Flow	Gallons, liters & meters ³
Flow Rate	gpm, gph, mgd, l/s, l/m, l/hr & m3/hr
Supply & Return Temperature	°F and °C
Operating Mode	Single, Dual or Bi-directional
Mode Status	Heating/Cooling or Forward/Reverse Flow
Auxiliary Input Total	Not Applicable
Energy Total Reset	Not Applicable
Flow Total Reset	Not Applicable
Auxiliary Total Reset	Not Applicable

Isolated solid state dry contact for energy total:

Contact rating: 100mA, 50V

Contact duration: 0.5, 1, 2, or 6 seconds

Optional analog Output(s) (4-20 mA, 0-10 V or 0-5 V): One or four analog output(s) available for flow rate, energy rate, supply/return temps or delta-T.

TYPICAL INSTALLATION

Insertion turbine flow meter shown. Any ONICON flow meter may be used with the System-10 BTU Meter. Consult with ONICON for additional flow meter types.

LIQUID FLOW SIGNAL INPUT

0-15 V pulse output from any ONICON flow meter. EMPERATURE SENSORS

Solid state sensors are custom calibrated using N.I.S.T. traceable temperature standards.

Current based signal (mA) is unaffected by wire length. **TEMPERATURE RANGE**

Standard liquid temperature range: 32° to 200°F Optional extended temperature ranges available.

Ambient temperature range: -20° to 140°F

MECHANICAL

Electronics Enclosure:

Standard: Steel NEMA 13, wall mount, 8"x10"x4" Optional: NEMA 4 (Not UL listed) Approximate weight: 12 lbs

Temperature Sensor Thermowell Kits:

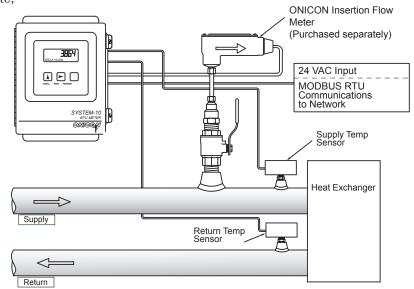
Thermowells and other kit components vary by fluid type, fluid temperature, pipe material and pipe size. Commonly used kits are listed on the previous page. Contact ONICON for additional thermowell kit options, including hot tap installation kits for retrofit installations.

ELECTRICAL

Input Power*:

Standard: 24 VAC 50/60 Hz, 500 mA

Optional: 120 VAC 50/60 Hz, 200 mA 230 VAC, 50 Hz, 150 mA

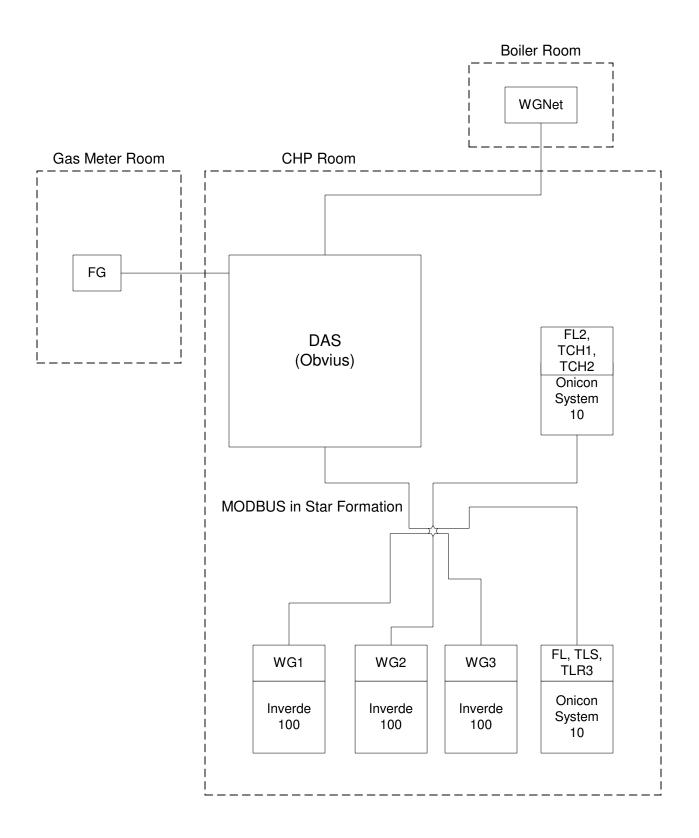

*Based on Btu meters configured for network connection without the optional analog outputs

Internal Supply:

Provides 24 VDC at 200 mA to electronics and flow meter **Wiring:**

Temperature signals: Use 18-22 ga twisted shielded pair Flow signals: Use 18-22 ga shielded - see flow meter specification sheet for number of conductors

Note: Specifications are subject to change without notice.



11451 Belcher Road South, Largo, FL 33773 • USA • Tel +1 (727) 447-6140 • Fax (727) 442-5699 www.onicon.com • sales@onicon.com

Appendix B

Logger Wiring Diagram and Details

NYSERDA CHP Demonstration Project at Brevoort East Obvius Acquisuite A8812 Data Logger As Built Diagram

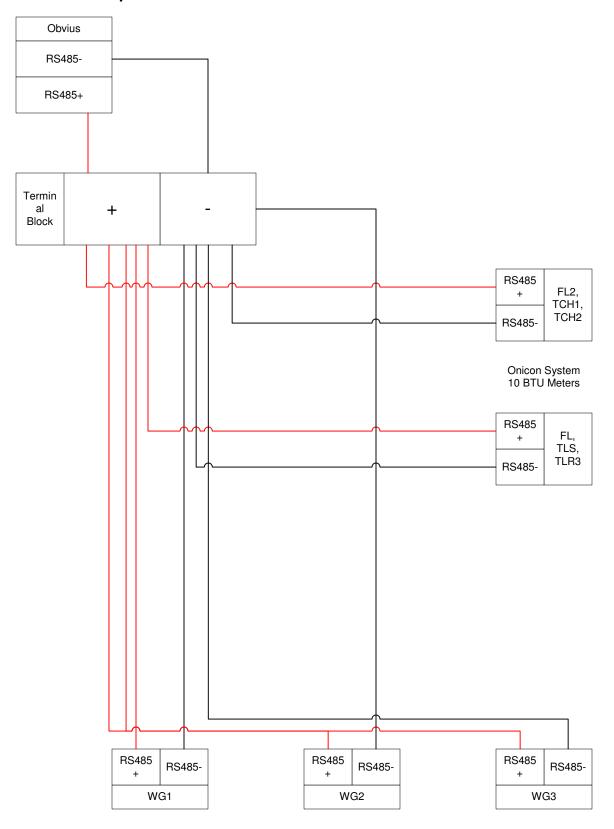
NYSERDA CHP Demonstration Project at Brevoort East Obvius Acquisuite A8812 Data Logger Main Board Input Terminals

(+) 24 VDC
IN1
G

(+) 24 VDC	
IN2	
G	

(+) 24 VDC
IN3
G
G

(+) 24 VDC	
IN4	
G	


(+) 24 VDC	
IN5	
G	
	-

(+) 24 VDC	
IN6	
G	

	(+) 24 VDC			
ľ	IN7	Red	FG_ACC	Utility Pulse Output TBD CF/pulse (not yet installed 4/1/2015)
	G	Black		

(+) 24 VDC			
IN8	Red	WGNet	Veris 8100 Series Energy Meter 1 kWh/pulse
G	Black		

NYSERDA CHP Demonstration Project at Brevoort East Obvius Acquisuite A8812 Data Logger MODBUS Map

Tecogen Inverde Sensors

Brevoort East

20 East 9th St. New York, NY 10003

Site Contact

Joseph E. Gehret Tecogen, Inc. 45 First Avenue Waltham, MA 02451 Joseph.E.Gehret@tecogen.com T: 781.466.6482 F: 781.466.6466 C: 617.803.6141

- CDH was on site to install data logger and terminate sensors on August 14, 2014.
- The CHP system began running November 14, 2014.
- CDH was on site April 1, 2015 to finalize and verify metering.
- The gas meter pulse output was connected on July 8, 2015.

CDH To Do:

- 1. Determine the MODBUS registry of the Building Imported Power (WT)
- 2. Verify flow meter(s)

<u>Summary</u>

The site, developer, or Tecogen provided and installed the power and BTU meters and the temperature sensors. CDH provided the data logger. An electrician did the majority of the wire pulls while CDH terminated wiring and verified metering.

Monitored Data Points

No.	Data Point	Tecogen Label	Description	Units	Instrument / Sensor	Output Type	Location	Note
2	WGNet		Net Generator Output	kWh/ kW	Veris 8100 Series Energy Meter	Pulse	Cogen Distribution Panel	
4	WG1	CHP1	CHP Unit 1 Electrical Output	kW	Tecogen Inverde Sensor	MODBUS RTU	Tecogen generator MODBUS output	
5	WG2	CHP2	CHP Unit 2 Electrical Output	kW	Tecogen Inverde Sensor	MODBUS RTU	Tecogen generator MODBUS output	
6	WG3	СНРЗ	CHP Unit 3 Electrical Output	kW	Tecogen Inverde Sensor	MODBUS RTU	Tecogen generator MODBUS output	
50	WT		Building Imported Power (WT)	kW	Unknown Sensor	MODBUS RTU	Tecogen generator MODBUS output	MODBUS register TBD. Datapoint named Empty1 in CDH database.
3	FG		Combined Generator Fuel Input	CF	Utility Meter	Pulse	In gas meter room	Accumulator integrated to gas use.
7	FL	F-CHPHW	Heat Recovery Loop Flow Rate (60 GPM through 3" S40 supply piping from Tecogen)	GPM	Onicon System-10 Flow Meter F3500 SN: 273369	MODBUS RTU	On main heat recovery loop downstream of generator, upstream of pumps	
8	TLS	BTUTS-1	Heat Recovery Loop Supply Temperature	deg F	Onicon System-10 Thermistor Calibrated 122 F - 300 F	MODBUS RTU	On main heat recovery loop downstream of generator	
9	TLR3	BTUTS-2	Heat Recovery Loop Return Temperature from HX-DHW	deg F	Onicon System-10 Thermistor Calibrated 122 F - 300 F	MODBUS RTU	On main heat recovery loop downstream of HX-DHW	
22	TLS_Alt	CHP1-TS3	Alt: Heat Recovery Loop Supply Temperature	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of generator	TLS_Alt equated to datapoint named G3T4 (TS3-3) in CDH database.
21	TLR2	CHP1-TS2	Diagnostic - Heat Recovery Loop Return Temperature from Abs Chiller	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of Abs Chiller	TLR2 equated to datapoint named G2T3 (TS2- 2) in CDH database.
15	TLR3_Alt	CHP1-TS3	Alt: Heat Recovery Loop Return Temperature from HX- DHW	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of HX-DHW	TLR3_Alt equated to datapoint named G1T4 (TS1-3) in CDH database.
31	TLR4	CHP1-TS5	Diagnostic - Heat Recovery Loop Return Temperature from HX-CHPHBR	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On main heat recovery loop downstream of HX-CHPHBR	TLR4 equated to datapoint named G3T6 (TS3- 5) in CDH database.
10	FL2	F-CHPABS	Diagnostic - Chiller Heat Recovery Sub-Loop Flow Rate	GPM	Onicon System-10 Flow Meter F350	MODBUS RTU	On chiller heat recovery loop upstream of pump	
13	THCHS	CHP1-TS1	Diagnostic - Chiller Heat Recovery Sub-Loop Supply Temperature to Absorption Chiller	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On chiller heat recovery loop upstream of chiller	TCH1 equated to datapoint named G1T2 (TS1- 1) in CDH database.
23	THCHR	CHP1-TS4	Diagnostic - Chiller Heat Recovery Sub-Loop Return Temperature from Absorption Chiller	deg F	Unknown Thermistor	MODBUS RTU (Analog)	On chiller heat recovery loop downstream from chiller	TCH2 equated to datapoint named G2T5 (TS2- 4) in CDH database.
33	G1T2 - G3T8	CHP1-TS1 - CHP3-TS7	Generator Client Temperatures (7 per generator)	deg F	Unknown Thermistors	MODBUS RTU (Analog)		Datapoint names in database offset from Tecogen Labels based on MODBUS register.
49	TAO		Ambient Temperature (Data Integrator Value)	deg F	NWS Station		LGA	

<u>IP Info</u>

The Brevoort East Obvius datalogger is connected to the internet via DHCP. A static IP is not available for the datalogger at this site.

Procedure

- Net Power will be verified by comparing the Veris 8100 Series Energy Meter reading on the Obvius to the generator measured power as reported by the Inverde units.
- The one-time reading of parasitic power at Panel CHP-AUX and a verification of the net power will be read with a handheld Fluke-39.

- Temperatures will be measured using a Fluke 51-II and a surface probe. •
 - All temperatures will be measured from the surface of the piping.
- Hot water loop flows were not able to be verified due to a failure of the ultrasonic flowmeter. The flow meter was set up as detailed below.

Verification Data – April 1, 2015

Generator Power:

TBD

Parasitic Loads:

TBD

Temperatures:

TBD

Flow Rate:

Difference Ultrasonic Onicon 56.5 45.12 11.4 45.37 56.6 11.2 57.0 45.25 11.8 57.0 45.2 11.8 45.0 57.0 12.0 57.2 45.4 11.8 57.1 45.3 11.8 56.9 45.5 11.4 57.3 45.3 12.0 57.9 45.3 12.6

FL Flow Rate Veification April 1, 2015

Spacing: 2.49 in OD: 3.5 in fluid: water thickness: 0.216 in

A retry yielded 95 - 99 gpm while the Onicon read 45 gpm

Site Photos

CDH Enclosure and Obvius Datalogger

Unknown Thermistor (TLR3_Alt) and Onicon System-10 Thermistor (TLR3)

Veris 8100 Series Energy Meter (WGNet)

Onicon F-3500 Calibration Tag (FL)

Utility Gas Meter (FG)

Cogen Distribution Panel (WGNet) and Veris Meter